Description: The degree of a scalar times a polynomial is exactly the degree of the original polynomial when the scalar is not a zero divisor. (Contributed by Stefan O'Rear, 28-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | deg1addle.y | |- Y = ( Poly1 ` R ) |
|
deg1addle.d | |- D = ( deg1 ` R ) |
||
deg1addle.r | |- ( ph -> R e. Ring ) |
||
deg1vsca.b | |- B = ( Base ` Y ) |
||
deg1vsca.e | |- E = ( RLReg ` R ) |
||
deg1vsca.p | |- .x. = ( .s ` Y ) |
||
deg1vsca.f | |- ( ph -> F e. E ) |
||
deg1vsca.g | |- ( ph -> G e. B ) |
||
Assertion | deg1vsca | |- ( ph -> ( D ` ( F .x. G ) ) = ( D ` G ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | deg1addle.y | |- Y = ( Poly1 ` R ) |
|
2 | deg1addle.d | |- D = ( deg1 ` R ) |
|
3 | deg1addle.r | |- ( ph -> R e. Ring ) |
|
4 | deg1vsca.b | |- B = ( Base ` Y ) |
|
5 | deg1vsca.e | |- E = ( RLReg ` R ) |
|
6 | deg1vsca.p | |- .x. = ( .s ` Y ) |
|
7 | deg1vsca.f | |- ( ph -> F e. E ) |
|
8 | deg1vsca.g | |- ( ph -> G e. B ) |
|
9 | eqid | |- ( 1o mPoly R ) = ( 1o mPoly R ) |
|
10 | 2 | deg1fval | |- D = ( 1o mDeg R ) |
11 | 1on | |- 1o e. On |
|
12 | 11 | a1i | |- ( ph -> 1o e. On ) |
13 | eqid | |- ( PwSer1 ` R ) = ( PwSer1 ` R ) |
|
14 | 1 13 4 | ply1bas | |- B = ( Base ` ( 1o mPoly R ) ) |
15 | 1 9 6 | ply1vsca | |- .x. = ( .s ` ( 1o mPoly R ) ) |
16 | 9 10 12 3 14 5 15 7 8 | mdegvsca | |- ( ph -> ( D ` ( F .x. G ) ) = ( D ` G ) ) |