Metamath Proof Explorer


Theorem deg1xrcl

Description: Closure of univariate polynomial degree in extended reals. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses deg1xrf.d
|- D = ( deg1 ` R )
deg1xrf.p
|- P = ( Poly1 ` R )
deg1xrf.b
|- B = ( Base ` P )
Assertion deg1xrcl
|- ( F e. B -> ( D ` F ) e. RR* )

Proof

Step Hyp Ref Expression
1 deg1xrf.d
 |-  D = ( deg1 ` R )
2 deg1xrf.p
 |-  P = ( Poly1 ` R )
3 deg1xrf.b
 |-  B = ( Base ` P )
4 1 2 3 deg1xrf
 |-  D : B --> RR*
5 4 ffvelrni
 |-  ( F e. B -> ( D ` F ) e. RR* )