Metamath Proof Explorer


Theorem deg1xrf

Description: Functionality of univariate polynomial degree, weak range. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses deg1xrf.d
|- D = ( deg1 ` R )
deg1xrf.p
|- P = ( Poly1 ` R )
deg1xrf.b
|- B = ( Base ` P )
Assertion deg1xrf
|- D : B --> RR*

Proof

Step Hyp Ref Expression
1 deg1xrf.d
 |-  D = ( deg1 ` R )
2 deg1xrf.p
 |-  P = ( Poly1 ` R )
3 deg1xrf.b
 |-  B = ( Base ` P )
4 1 deg1fval
 |-  D = ( 1o mDeg R )
5 eqid
 |-  ( 1o mPoly R ) = ( 1o mPoly R )
6 eqid
 |-  ( PwSer1 ` R ) = ( PwSer1 ` R )
7 2 6 3 ply1bas
 |-  B = ( Base ` ( 1o mPoly R ) )
8 4 5 7 mdegxrf
 |-  D : B --> RR*