| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-icn |  |-  _i e. CC | 
						
							| 2 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 3 | 1 2 | mpan |  |-  ( A e. CC -> ( _i x. A ) e. CC ) | 
						
							| 4 |  | efexp |  |-  ( ( ( _i x. A ) e. CC /\ N e. ZZ ) -> ( exp ` ( N x. ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) ^ N ) ) | 
						
							| 5 | 3 4 | sylan |  |-  ( ( A e. CC /\ N e. ZZ ) -> ( exp ` ( N x. ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) ^ N ) ) | 
						
							| 6 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 7 |  | mul12 |  |-  ( ( N e. CC /\ _i e. CC /\ A e. CC ) -> ( N x. ( _i x. A ) ) = ( _i x. ( N x. A ) ) ) | 
						
							| 8 | 1 7 | mp3an2 |  |-  ( ( N e. CC /\ A e. CC ) -> ( N x. ( _i x. A ) ) = ( _i x. ( N x. A ) ) ) | 
						
							| 9 | 8 | fveq2d |  |-  ( ( N e. CC /\ A e. CC ) -> ( exp ` ( N x. ( _i x. A ) ) ) = ( exp ` ( _i x. ( N x. A ) ) ) ) | 
						
							| 10 |  | mulcl |  |-  ( ( N e. CC /\ A e. CC ) -> ( N x. A ) e. CC ) | 
						
							| 11 |  | efival |  |-  ( ( N x. A ) e. CC -> ( exp ` ( _i x. ( N x. A ) ) ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( N e. CC /\ A e. CC ) -> ( exp ` ( _i x. ( N x. A ) ) ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) | 
						
							| 13 | 9 12 | eqtrd |  |-  ( ( N e. CC /\ A e. CC ) -> ( exp ` ( N x. ( _i x. A ) ) ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) | 
						
							| 14 | 13 | ancoms |  |-  ( ( A e. CC /\ N e. CC ) -> ( exp ` ( N x. ( _i x. A ) ) ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) | 
						
							| 15 | 6 14 | sylan2 |  |-  ( ( A e. CC /\ N e. ZZ ) -> ( exp ` ( N x. ( _i x. A ) ) ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) | 
						
							| 16 |  | efival |  |-  ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) | 
						
							| 17 | 16 | oveq1d |  |-  ( A e. CC -> ( ( exp ` ( _i x. A ) ) ^ N ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ N ) ) | 
						
							| 18 | 17 | adantr |  |-  ( ( A e. CC /\ N e. ZZ ) -> ( ( exp ` ( _i x. A ) ) ^ N ) = ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ N ) ) | 
						
							| 19 | 5 15 18 | 3eqtr3rd |  |-  ( ( A e. CC /\ N e. ZZ ) -> ( ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ^ N ) = ( ( cos ` ( N x. A ) ) + ( _i x. ( sin ` ( N x. A ) ) ) ) ) |