Step |
Hyp |
Ref |
Expression |
1 |
|
derang.d |
|- D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) |
2 |
1
|
derangenlem |
|- ( ( A ~~ B /\ B e. Fin ) -> ( D ` A ) <_ ( D ` B ) ) |
3 |
|
ensym |
|- ( A ~~ B -> B ~~ A ) |
4 |
3
|
adantr |
|- ( ( A ~~ B /\ B e. Fin ) -> B ~~ A ) |
5 |
|
enfi |
|- ( A ~~ B -> ( A e. Fin <-> B e. Fin ) ) |
6 |
5
|
biimpar |
|- ( ( A ~~ B /\ B e. Fin ) -> A e. Fin ) |
7 |
1
|
derangenlem |
|- ( ( B ~~ A /\ A e. Fin ) -> ( D ` B ) <_ ( D ` A ) ) |
8 |
4 6 7
|
syl2anc |
|- ( ( A ~~ B /\ B e. Fin ) -> ( D ` B ) <_ ( D ` A ) ) |
9 |
1
|
derangf |
|- D : Fin --> NN0 |
10 |
9
|
ffvelrni |
|- ( A e. Fin -> ( D ` A ) e. NN0 ) |
11 |
6 10
|
syl |
|- ( ( A ~~ B /\ B e. Fin ) -> ( D ` A ) e. NN0 ) |
12 |
9
|
ffvelrni |
|- ( B e. Fin -> ( D ` B ) e. NN0 ) |
13 |
12
|
adantl |
|- ( ( A ~~ B /\ B e. Fin ) -> ( D ` B ) e. NN0 ) |
14 |
|
nn0re |
|- ( ( D ` A ) e. NN0 -> ( D ` A ) e. RR ) |
15 |
|
nn0re |
|- ( ( D ` B ) e. NN0 -> ( D ` B ) e. RR ) |
16 |
|
letri3 |
|- ( ( ( D ` A ) e. RR /\ ( D ` B ) e. RR ) -> ( ( D ` A ) = ( D ` B ) <-> ( ( D ` A ) <_ ( D ` B ) /\ ( D ` B ) <_ ( D ` A ) ) ) ) |
17 |
14 15 16
|
syl2an |
|- ( ( ( D ` A ) e. NN0 /\ ( D ` B ) e. NN0 ) -> ( ( D ` A ) = ( D ` B ) <-> ( ( D ` A ) <_ ( D ` B ) /\ ( D ` B ) <_ ( D ` A ) ) ) ) |
18 |
11 13 17
|
syl2anc |
|- ( ( A ~~ B /\ B e. Fin ) -> ( ( D ` A ) = ( D ` B ) <-> ( ( D ` A ) <_ ( D ` B ) /\ ( D ` B ) <_ ( D ` A ) ) ) ) |
19 |
2 8 18
|
mpbir2and |
|- ( ( A ~~ B /\ B e. Fin ) -> ( D ` A ) = ( D ` B ) ) |