Description: The derangement number is a function from finite sets to nonnegative integers. (Contributed by Mario Carneiro, 19-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | derang.d | |- D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) |
|
Assertion | derangf | |- D : Fin --> NN0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | derang.d | |- D = ( x e. Fin |-> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) ) |
|
2 | deranglem | |- ( x e. Fin -> { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } e. Fin ) |
|
3 | hashcl | |- ( { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } e. Fin -> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) e. NN0 ) |
|
4 | 2 3 | syl | |- ( x e. Fin -> ( # ` { f | ( f : x -1-1-onto-> x /\ A. y e. x ( f ` y ) =/= y ) } ) e. NN0 ) |
5 | 1 4 | fmpti | |- D : Fin --> NN0 |