Description: If a relation is disjoint, then it is equivalent to the equivalent cosets of the relation, inference version. (Contributed by Peter Mazsa, 30-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | detlem.1 | |- Disj R |
|
Assertion | detlem | |- ( Disj R <-> EqvRel ,~ R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | detlem.1 | |- Disj R |
|
2 | disjim | |- ( Disj R -> EqvRel ,~ R ) |
|
3 | 1 | a1i | |- ( EqvRel ,~ R -> Disj R ) |
4 | 2 3 | impbii | |- ( Disj R <-> EqvRel ,~ R ) |