| Step |
Hyp |
Ref |
Expression |
| 0 |
|
c0g |
|- 0g |
| 1 |
|
vg |
|- g |
| 2 |
|
cvv |
|- _V |
| 3 |
|
ve |
|- e |
| 4 |
3
|
cv |
|- e |
| 5 |
|
cbs |
|- Base |
| 6 |
1
|
cv |
|- g |
| 7 |
6 5
|
cfv |
|- ( Base ` g ) |
| 8 |
4 7
|
wcel |
|- e e. ( Base ` g ) |
| 9 |
|
vx |
|- x |
| 10 |
|
cplusg |
|- +g |
| 11 |
6 10
|
cfv |
|- ( +g ` g ) |
| 12 |
9
|
cv |
|- x |
| 13 |
4 12 11
|
co |
|- ( e ( +g ` g ) x ) |
| 14 |
13 12
|
wceq |
|- ( e ( +g ` g ) x ) = x |
| 15 |
12 4 11
|
co |
|- ( x ( +g ` g ) e ) |
| 16 |
15 12
|
wceq |
|- ( x ( +g ` g ) e ) = x |
| 17 |
14 16
|
wa |
|- ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) |
| 18 |
17 9 7
|
wral |
|- A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) |
| 19 |
8 18
|
wa |
|- ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) |
| 20 |
19 3
|
cio |
|- ( iota e ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) ) |
| 21 |
1 2 20
|
cmpt |
|- ( g e. _V |-> ( iota e ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) ) ) |
| 22 |
0 21
|
wceq |
|- 0g = ( g e. _V |-> ( iota e ( e e. ( Base ` g ) /\ A. x e. ( Base ` g ) ( ( e ( +g ` g ) x ) = x /\ ( x ( +g ` g ) e ) = x ) ) ) ) |