Metamath Proof Explorer


Definition df-0o

Description: Define the zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007) (New usage is discouraged.)

Ref Expression
Assertion df-0o
|- 0op = ( u e. NrmCVec , w e. NrmCVec |-> ( ( BaseSet ` u ) X. { ( 0vec ` w ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 c0o
 |-  0op
1 vu
 |-  u
2 cnv
 |-  NrmCVec
3 vw
 |-  w
4 cba
 |-  BaseSet
5 1 cv
 |-  u
6 5 4 cfv
 |-  ( BaseSet ` u )
7 cn0v
 |-  0vec
8 3 cv
 |-  w
9 8 7 cfv
 |-  ( 0vec ` w )
10 9 csn
 |-  { ( 0vec ` w ) }
11 6 10 cxp
 |-  ( ( BaseSet ` u ) X. { ( 0vec ` w ) } )
12 1 3 2 2 11 cmpo
 |-  ( u e. NrmCVec , w e. NrmCVec |-> ( ( BaseSet ` u ) X. { ( 0vec ` w ) } ) )
13 0 12 wceq
 |-  0op = ( u e. NrmCVec , w e. NrmCVec |-> ( ( BaseSet ` u ) X. { ( 0vec ` w ) } ) )