Description: Define the zero operator between two normed complex vector spaces. (Contributed by NM, 28-Nov-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-0o | |- 0op = ( u e. NrmCVec , w e. NrmCVec |-> ( ( BaseSet ` u ) X. { ( 0vec ` w ) } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | c0o | |- 0op |
|
1 | vu | |- u |
|
2 | cnv | |- NrmCVec |
|
3 | vw | |- w |
|
4 | cba | |- BaseSet |
|
5 | 1 | cv | |- u |
6 | 5 4 | cfv | |- ( BaseSet ` u ) |
7 | cn0v | |- 0vec |
|
8 | 3 | cv | |- w |
9 | 8 7 | cfv | |- ( 0vec ` w ) |
10 | 9 | csn | |- { ( 0vec ` w ) } |
11 | 6 10 | cxp | |- ( ( BaseSet ` u ) X. { ( 0vec ` w ) } ) |
12 | 1 3 2 2 11 | cmpo | |- ( u e. NrmCVec , w e. NrmCVec |-> ( ( BaseSet ` u ) X. { ( 0vec ` w ) } ) ) |
13 | 0 12 | wceq | |- 0op = ( u e. NrmCVec , w e. NrmCVec |-> ( ( BaseSet ` u ) X. { ( 0vec ` w ) } ) ) |