Metamath Proof Explorer


Definition df-0v

Description: Define the zero vector in a normed complex vector space. (Contributed by NM, 24-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion df-0v
|- 0vec = ( GId o. +v )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cn0v
 |-  0vec
1 cgi
 |-  GId
2 cpv
 |-  +v
3 1 2 ccom
 |-  ( GId o. +v )
4 0 3 wceq
 |-  0vec = ( GId o. +v )