Metamath Proof Explorer
Definition df-0v
Description: Define the zero vector in a normed complex vector space. (Contributed by NM, 24-Apr-2007) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
df-0v |
|- 0vec = ( GId o. +v ) |
Detailed syntax breakdown
Step |
Hyp |
Ref |
Expression |
0 |
|
cn0v |
|- 0vec |
1 |
|
cgi |
|- GId |
2 |
|
cpv |
|- +v |
3 |
1 2
|
ccom |
|- ( GId o. +v ) |
4 |
0 3
|
wceq |
|- 0vec = ( GId o. +v ) |