Metamath Proof Explorer


Definition df-1o

Description: Define the ordinal number 1. (Contributed by NM, 29-Oct-1995)

Ref Expression
Assertion df-1o
|- 1o = suc (/)

Detailed syntax breakdown

Step Hyp Ref Expression
0 c1o
 |-  1o
1 c0
 |-  (/)
2 1 csuc
 |-  suc (/)
3 0 2 wceq
 |-  1o = suc (/)