Description: Define the class of all second-countable topologies. (Contributed by Jeff Hankins, 17-Jan-2010)
Ref | Expression | ||
---|---|---|---|
Assertion | df-2ndc | |- 2ndc = { j | E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = j ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | c2ndc | |- 2ndc |
|
1 | vj | |- j |
|
2 | vx | |- x |
|
3 | ctb | |- TopBases |
|
4 | 2 | cv | |- x |
5 | cdom | |- ~<_ |
|
6 | com | |- _om |
|
7 | 4 6 5 | wbr | |- x ~<_ _om |
8 | ctg | |- topGen |
|
9 | 4 8 | cfv | |- ( topGen ` x ) |
10 | 1 | cv | |- j |
11 | 9 10 | wceq | |- ( topGen ` x ) = j |
12 | 7 11 | wa | |- ( x ~<_ _om /\ ( topGen ` x ) = j ) |
13 | 12 2 3 | wrex | |- E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = j ) |
14 | 13 1 | cab | |- { j | E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = j ) } |
15 | 0 14 | wceq | |- 2ndc = { j | E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = j ) } |