Metamath Proof Explorer


Definition df-2ndc

Description: Define the class of all second-countable topologies. (Contributed by Jeff Hankins, 17-Jan-2010)

Ref Expression
Assertion df-2ndc
|- 2ndc = { j | E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = j ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 c2ndc
 |-  2ndc
1 vj
 |-  j
2 vx
 |-  x
3 ctb
 |-  TopBases
4 2 cv
 |-  x
5 cdom
 |-  ~<_
6 com
 |-  _om
7 4 6 5 wbr
 |-  x ~<_ _om
8 ctg
 |-  topGen
9 4 8 cfv
 |-  ( topGen ` x )
10 1 cv
 |-  j
11 9 10 wceq
 |-  ( topGen ` x ) = j
12 7 11 wa
 |-  ( x ~<_ _om /\ ( topGen ` x ) = j )
13 12 2 3 wrex
 |-  E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = j )
14 13 1 cab
 |-  { j | E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = j ) }
15 0 14 wceq
 |-  2ndc = { j | E. x e. TopBases ( x ~<_ _om /\ ( topGen ` x ) = j ) }