Metamath Proof Explorer


Definition df-3or

Description: Define disjunction ('or') of three wff's. Definition *2.33 of WhiteheadRussell p. 105. This abbreviation reduces the number of parentheses and emphasizes that the order of bracketing is not important by virtue of the associative law orass . (Contributed by NM, 8-Apr-1994)

Ref Expression
Assertion df-3or
|- ( ( ph \/ ps \/ ch ) <-> ( ( ph \/ ps ) \/ ch ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 wph
 |-  ph
1 wps
 |-  ps
2 wch
 |-  ch
3 0 1 2 w3o
 |-  ( ph \/ ps \/ ch )
4 0 1 wo
 |-  ( ph \/ ps )
5 4 2 wo
 |-  ( ( ph \/ ps ) \/ ch )
6 3 5 wb
 |-  ( ( ph \/ ps \/ ch ) <-> ( ( ph \/ ps ) \/ ch ) )