Description: Define the class of all Abelian group operations. (Contributed by NM, 2-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ablo | |- AbelOp = { g e. GrpOp | A. x e. ran g A. y e. ran g ( x g y ) = ( y g x ) } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cablo | |- AbelOp | |
| 1 | vg | |- g | |
| 2 | cgr | |- GrpOp | |
| 3 | vx | |- x | |
| 4 | 1 | cv | |- g | 
| 5 | 4 | crn | |- ran g | 
| 6 | vy | |- y | |
| 7 | 3 | cv | |- x | 
| 8 | 6 | cv | |- y | 
| 9 | 7 8 4 | co | |- ( x g y ) | 
| 10 | 8 7 4 | co | |- ( y g x ) | 
| 11 | 9 10 | wceq | |- ( x g y ) = ( y g x ) | 
| 12 | 11 6 5 | wral | |- A. y e. ran g ( x g y ) = ( y g x ) | 
| 13 | 12 3 5 | wral | |- A. x e. ran g A. y e. ran g ( x g y ) = ( y g x ) | 
| 14 | 13 1 2 | crab |  |-  { g e. GrpOp | A. x e. ran g A. y e. ran g ( x g y ) = ( y g x ) } | 
| 15 | 0 14 | wceq |  |-  AbelOp = { g e. GrpOp | A. x e. ran g A. y e. ran g ( x g y ) = ( y g x ) } |