Metamath Proof Explorer


Definition df-ablo

Description: Define the class of all Abelian group operations. (Contributed by NM, 2-Nov-2006) (New usage is discouraged.)

Ref Expression
Assertion df-ablo
|- AbelOp = { g e. GrpOp | A. x e. ran g A. y e. ran g ( x g y ) = ( y g x ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cablo
 |-  AbelOp
1 vg
 |-  g
2 cgr
 |-  GrpOp
3 vx
 |-  x
4 1 cv
 |-  g
5 4 crn
 |-  ran g
6 vy
 |-  y
7 3 cv
 |-  x
8 6 cv
 |-  y
9 7 8 4 co
 |-  ( x g y )
10 8 7 4 co
 |-  ( y g x )
11 9 10 wceq
 |-  ( x g y ) = ( y g x )
12 11 6 5 wral
 |-  A. y e. ran g ( x g y ) = ( y g x )
13 12 3 5 wral
 |-  A. x e. ran g A. y e. ran g ( x g y ) = ( y g x )
14 13 1 2 crab
 |-  { g e. GrpOp | A. x e. ran g A. y e. ran g ( x g y ) = ( y g x ) }
15 0 14 wceq
 |-  AbelOp = { g e. GrpOp | A. x e. ran g A. y e. ran g ( x g y ) = ( y g x ) }