Step |
Hyp |
Ref |
Expression |
0 |
|
cacs |
|- ACS |
1 |
|
vx |
|- x |
2 |
|
cvv |
|- _V |
3 |
|
vc |
|- c |
4 |
|
cmre |
|- Moore |
5 |
1
|
cv |
|- x |
6 |
5 4
|
cfv |
|- ( Moore ` x ) |
7 |
|
vf |
|- f |
8 |
7
|
cv |
|- f |
9 |
5
|
cpw |
|- ~P x |
10 |
9 9 8
|
wf |
|- f : ~P x --> ~P x |
11 |
|
vs |
|- s |
12 |
11
|
cv |
|- s |
13 |
3
|
cv |
|- c |
14 |
12 13
|
wcel |
|- s e. c |
15 |
12
|
cpw |
|- ~P s |
16 |
|
cfn |
|- Fin |
17 |
15 16
|
cin |
|- ( ~P s i^i Fin ) |
18 |
8 17
|
cima |
|- ( f " ( ~P s i^i Fin ) ) |
19 |
18
|
cuni |
|- U. ( f " ( ~P s i^i Fin ) ) |
20 |
19 12
|
wss |
|- U. ( f " ( ~P s i^i Fin ) ) C_ s |
21 |
14 20
|
wb |
|- ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) |
22 |
21 11 9
|
wral |
|- A. s e. ~P x ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) |
23 |
10 22
|
wa |
|- ( f : ~P x --> ~P x /\ A. s e. ~P x ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) |
24 |
23 7
|
wex |
|- E. f ( f : ~P x --> ~P x /\ A. s e. ~P x ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) |
25 |
24 3 6
|
crab |
|- { c e. ( Moore ` x ) | E. f ( f : ~P x --> ~P x /\ A. s e. ~P x ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) } |
26 |
1 2 25
|
cmpt |
|- ( x e. _V |-> { c e. ( Moore ` x ) | E. f ( f : ~P x --> ~P x /\ A. s e. ~P x ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) } ) |
27 |
0 26
|
wceq |
|- ACS = ( x e. _V |-> { c e. ( Moore ` x ) | E. f ( f : ~P x --> ~P x /\ A. s e. ~P x ( s e. c <-> U. ( f " ( ~P s i^i Fin ) ) C_ s ) ) } ) |