Step |
Hyp |
Ref |
Expression |
0 |
|
caddc |
|- + |
1 |
|
vx |
|- x |
2 |
|
vy |
|- y |
3 |
|
vz |
|- z |
4 |
1
|
cv |
|- x |
5 |
|
cc |
|- CC |
6 |
4 5
|
wcel |
|- x e. CC |
7 |
2
|
cv |
|- y |
8 |
7 5
|
wcel |
|- y e. CC |
9 |
6 8
|
wa |
|- ( x e. CC /\ y e. CC ) |
10 |
|
vw |
|- w |
11 |
|
vv |
|- v |
12 |
|
vu |
|- u |
13 |
|
vf |
|- f |
14 |
10
|
cv |
|- w |
15 |
11
|
cv |
|- v |
16 |
14 15
|
cop |
|- <. w , v >. |
17 |
4 16
|
wceq |
|- x = <. w , v >. |
18 |
12
|
cv |
|- u |
19 |
13
|
cv |
|- f |
20 |
18 19
|
cop |
|- <. u , f >. |
21 |
7 20
|
wceq |
|- y = <. u , f >. |
22 |
17 21
|
wa |
|- ( x = <. w , v >. /\ y = <. u , f >. ) |
23 |
3
|
cv |
|- z |
24 |
|
cplr |
|- +R |
25 |
14 18 24
|
co |
|- ( w +R u ) |
26 |
15 19 24
|
co |
|- ( v +R f ) |
27 |
25 26
|
cop |
|- <. ( w +R u ) , ( v +R f ) >. |
28 |
23 27
|
wceq |
|- z = <. ( w +R u ) , ( v +R f ) >. |
29 |
22 28
|
wa |
|- ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) |
30 |
29 13
|
wex |
|- E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) |
31 |
30 12
|
wex |
|- E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) |
32 |
31 11
|
wex |
|- E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) |
33 |
32 10
|
wex |
|- E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) |
34 |
9 33
|
wa |
|- ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) |
35 |
34 1 2 3
|
coprab |
|- { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) } |
36 |
0 35
|
wceq |
|- + = { <. <. x , y >. , z >. | ( ( x e. CC /\ y e. CC ) /\ E. w E. v E. u E. f ( ( x = <. w , v >. /\ y = <. u , f >. ) /\ z = <. ( w +R u ) , ( v +R f ) >. ) ) } |