| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cado |
|- adjh |
| 1 |
|
vt |
|- t |
| 2 |
|
vu |
|- u |
| 3 |
1
|
cv |
|- t |
| 4 |
|
chba |
|- ~H |
| 5 |
4 4 3
|
wf |
|- t : ~H --> ~H |
| 6 |
2
|
cv |
|- u |
| 7 |
4 4 6
|
wf |
|- u : ~H --> ~H |
| 8 |
|
vx |
|- x |
| 9 |
|
vy |
|- y |
| 10 |
8
|
cv |
|- x |
| 11 |
10 3
|
cfv |
|- ( t ` x ) |
| 12 |
|
csp |
|- .ih |
| 13 |
9
|
cv |
|- y |
| 14 |
11 13 12
|
co |
|- ( ( t ` x ) .ih y ) |
| 15 |
13 6
|
cfv |
|- ( u ` y ) |
| 16 |
10 15 12
|
co |
|- ( x .ih ( u ` y ) ) |
| 17 |
14 16
|
wceq |
|- ( ( t ` x ) .ih y ) = ( x .ih ( u ` y ) ) |
| 18 |
17 9 4
|
wral |
|- A. y e. ~H ( ( t ` x ) .ih y ) = ( x .ih ( u ` y ) ) |
| 19 |
18 8 4
|
wral |
|- A. x e. ~H A. y e. ~H ( ( t ` x ) .ih y ) = ( x .ih ( u ` y ) ) |
| 20 |
5 7 19
|
w3a |
|- ( t : ~H --> ~H /\ u : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( ( t ` x ) .ih y ) = ( x .ih ( u ` y ) ) ) |
| 21 |
20 1 2
|
copab |
|- { <. t , u >. | ( t : ~H --> ~H /\ u : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( ( t ` x ) .ih y ) = ( x .ih ( u ` y ) ) ) } |
| 22 |
0 21
|
wceq |
|- adjh = { <. t , u >. | ( t : ~H --> ~H /\ u : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( ( t ` x ) .ih y ) = ( x .ih ( u ` y ) ) ) } |