Step |
Hyp |
Ref |
Expression |
0 |
|
cado |
|- adjh |
1 |
|
vt |
|- t |
2 |
|
vu |
|- u |
3 |
1
|
cv |
|- t |
4 |
|
chba |
|- ~H |
5 |
4 4 3
|
wf |
|- t : ~H --> ~H |
6 |
2
|
cv |
|- u |
7 |
4 4 6
|
wf |
|- u : ~H --> ~H |
8 |
|
vx |
|- x |
9 |
|
vy |
|- y |
10 |
8
|
cv |
|- x |
11 |
10 3
|
cfv |
|- ( t ` x ) |
12 |
|
csp |
|- .ih |
13 |
9
|
cv |
|- y |
14 |
11 13 12
|
co |
|- ( ( t ` x ) .ih y ) |
15 |
13 6
|
cfv |
|- ( u ` y ) |
16 |
10 15 12
|
co |
|- ( x .ih ( u ` y ) ) |
17 |
14 16
|
wceq |
|- ( ( t ` x ) .ih y ) = ( x .ih ( u ` y ) ) |
18 |
17 9 4
|
wral |
|- A. y e. ~H ( ( t ` x ) .ih y ) = ( x .ih ( u ` y ) ) |
19 |
18 8 4
|
wral |
|- A. x e. ~H A. y e. ~H ( ( t ` x ) .ih y ) = ( x .ih ( u ` y ) ) |
20 |
5 7 19
|
w3a |
|- ( t : ~H --> ~H /\ u : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( ( t ` x ) .ih y ) = ( x .ih ( u ` y ) ) ) |
21 |
20 1 2
|
copab |
|- { <. t , u >. | ( t : ~H --> ~H /\ u : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( ( t ` x ) .ih y ) = ( x .ih ( u ` y ) ) ) } |
22 |
0 21
|
wceq |
|- adjh = { <. t , u >. | ( t : ~H --> ~H /\ u : ~H --> ~H /\ A. x e. ~H A. y e. ~H ( ( t ` x ) .ih y ) = ( x .ih ( u ` y ) ) ) } |