Metamath Proof Explorer


Definition df-ascl

Description: Every unital algebra contains a canonical homomorphic image of its ring of scalars as scalar multiples of the unit. This names the homomorphism. (Contributed by Mario Carneiro, 8-Mar-2015)

Ref Expression
Assertion df-ascl
|- algSc = ( w e. _V |-> ( x e. ( Base ` ( Scalar ` w ) ) |-> ( x ( .s ` w ) ( 1r ` w ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cascl
 |-  algSc
1 vw
 |-  w
2 cvv
 |-  _V
3 vx
 |-  x
4 cbs
 |-  Base
5 csca
 |-  Scalar
6 1 cv
 |-  w
7 6 5 cfv
 |-  ( Scalar ` w )
8 7 4 cfv
 |-  ( Base ` ( Scalar ` w ) )
9 3 cv
 |-  x
10 cvsca
 |-  .s
11 6 10 cfv
 |-  ( .s ` w )
12 cur
 |-  1r
13 6 12 cfv
 |-  ( 1r ` w )
14 9 13 11 co
 |-  ( x ( .s ` w ) ( 1r ` w ) )
15 3 8 14 cmpt
 |-  ( x e. ( Base ` ( Scalar ` w ) ) |-> ( x ( .s ` w ) ( 1r ` w ) ) )
16 1 2 15 cmpt
 |-  ( w e. _V |-> ( x e. ( Base ` ( Scalar ` w ) ) |-> ( x ( .s ` w ) ( 1r ` w ) ) ) )
17 0 16 wceq
 |-  algSc = ( w e. _V |-> ( x e. ( Base ` ( Scalar ` w ) ) |-> ( x ( .s ` w ) ( 1r ` w ) ) ) )