| Step | Hyp | Ref | Expression | 
						
							| 0 |  | casp |  |-  AlgSpan | 
						
							| 1 |  | vw |  |-  w | 
						
							| 2 |  | casa |  |-  AssAlg | 
						
							| 3 |  | vs |  |-  s | 
						
							| 4 |  | cbs |  |-  Base | 
						
							| 5 | 1 | cv |  |-  w | 
						
							| 6 | 5 4 | cfv |  |-  ( Base ` w ) | 
						
							| 7 | 6 | cpw |  |-  ~P ( Base ` w ) | 
						
							| 8 |  | vt |  |-  t | 
						
							| 9 |  | csubrg |  |-  SubRing | 
						
							| 10 | 5 9 | cfv |  |-  ( SubRing ` w ) | 
						
							| 11 |  | clss |  |-  LSubSp | 
						
							| 12 | 5 11 | cfv |  |-  ( LSubSp ` w ) | 
						
							| 13 | 10 12 | cin |  |-  ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | 
						
							| 14 | 3 | cv |  |-  s | 
						
							| 15 | 8 | cv |  |-  t | 
						
							| 16 | 14 15 | wss |  |-  s C_ t | 
						
							| 17 | 16 8 13 | crab |  |-  { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } | 
						
							| 18 | 17 | cint |  |-  |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } | 
						
							| 19 | 3 7 18 | cmpt |  |-  ( s e. ~P ( Base ` w ) |-> |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } ) | 
						
							| 20 | 1 2 19 | cmpt |  |-  ( w e. AssAlg |-> ( s e. ~P ( Base ` w ) |-> |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } ) ) | 
						
							| 21 | 0 20 | wceq |  |-  AlgSpan = ( w e. AssAlg |-> ( s e. ~P ( Base ` w ) |-> |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } ) ) |