Step |
Hyp |
Ref |
Expression |
0 |
|
casp |
|- AlgSpan |
1 |
|
vw |
|- w |
2 |
|
casa |
|- AssAlg |
3 |
|
vs |
|- s |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- w |
6 |
5 4
|
cfv |
|- ( Base ` w ) |
7 |
6
|
cpw |
|- ~P ( Base ` w ) |
8 |
|
vt |
|- t |
9 |
|
csubrg |
|- SubRing |
10 |
5 9
|
cfv |
|- ( SubRing ` w ) |
11 |
|
clss |
|- LSubSp |
12 |
5 11
|
cfv |
|- ( LSubSp ` w ) |
13 |
10 12
|
cin |
|- ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) |
14 |
3
|
cv |
|- s |
15 |
8
|
cv |
|- t |
16 |
14 15
|
wss |
|- s C_ t |
17 |
16 8 13
|
crab |
|- { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } |
18 |
17
|
cint |
|- |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } |
19 |
3 7 18
|
cmpt |
|- ( s e. ~P ( Base ` w ) |-> |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } ) |
20 |
1 2 19
|
cmpt |
|- ( w e. AssAlg |-> ( s e. ~P ( Base ` w ) |-> |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } ) ) |
21 |
0 20
|
wceq |
|- AlgSpan = ( w e. AssAlg |-> ( s e. ~P ( Base ` w ) |-> |^| { t e. ( ( SubRing ` w ) i^i ( LSubSp ` w ) ) | s C_ t } ) ) |