Step |
Hyp |
Ref |
Expression |
0 |
|
casa |
|- AssAlg |
1 |
|
vw |
|- w |
2 |
|
clmod |
|- LMod |
3 |
|
crg |
|- Ring |
4 |
2 3
|
cin |
|- ( LMod i^i Ring ) |
5 |
|
csca |
|- Scalar |
6 |
1
|
cv |
|- w |
7 |
6 5
|
cfv |
|- ( Scalar ` w ) |
8 |
|
vf |
|- f |
9 |
8
|
cv |
|- f |
10 |
|
ccrg |
|- CRing |
11 |
9 10
|
wcel |
|- f e. CRing |
12 |
|
vr |
|- r |
13 |
|
cbs |
|- Base |
14 |
9 13
|
cfv |
|- ( Base ` f ) |
15 |
|
vx |
|- x |
16 |
6 13
|
cfv |
|- ( Base ` w ) |
17 |
|
vy |
|- y |
18 |
|
cvsca |
|- .s |
19 |
6 18
|
cfv |
|- ( .s ` w ) |
20 |
|
vs |
|- s |
21 |
|
cmulr |
|- .r |
22 |
6 21
|
cfv |
|- ( .r ` w ) |
23 |
|
vt |
|- t |
24 |
12
|
cv |
|- r |
25 |
20
|
cv |
|- s |
26 |
15
|
cv |
|- x |
27 |
24 26 25
|
co |
|- ( r s x ) |
28 |
23
|
cv |
|- t |
29 |
17
|
cv |
|- y |
30 |
27 29 28
|
co |
|- ( ( r s x ) t y ) |
31 |
26 29 28
|
co |
|- ( x t y ) |
32 |
24 31 25
|
co |
|- ( r s ( x t y ) ) |
33 |
30 32
|
wceq |
|- ( ( r s x ) t y ) = ( r s ( x t y ) ) |
34 |
24 29 25
|
co |
|- ( r s y ) |
35 |
26 34 28
|
co |
|- ( x t ( r s y ) ) |
36 |
35 32
|
wceq |
|- ( x t ( r s y ) ) = ( r s ( x t y ) ) |
37 |
33 36
|
wa |
|- ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) |
38 |
37 23 22
|
wsbc |
|- [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) |
39 |
38 20 19
|
wsbc |
|- [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) |
40 |
39 17 16
|
wral |
|- A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) |
41 |
40 15 16
|
wral |
|- A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) |
42 |
41 12 14
|
wral |
|- A. r e. ( Base ` f ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) |
43 |
11 42
|
wa |
|- ( f e. CRing /\ A. r e. ( Base ` f ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) ) |
44 |
43 8 7
|
wsbc |
|- [. ( Scalar ` w ) / f ]. ( f e. CRing /\ A. r e. ( Base ` f ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) ) |
45 |
44 1 4
|
crab |
|- { w e. ( LMod i^i Ring ) | [. ( Scalar ` w ) / f ]. ( f e. CRing /\ A. r e. ( Base ` f ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) ) } |
46 |
0 45
|
wceq |
|- AssAlg = { w e. ( LMod i^i Ring ) | [. ( Scalar ` w ) / f ]. ( f e. CRing /\ A. r e. ( Base ` f ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) ) } |