Metamath Proof Explorer


Definition df-assa

Description: Definition of an associative algebra. An associative algebra is a set equipped with a left-module structure on a (commutative) ring, coupled with a multiplicative internal operation on the vectors of the module that is associative and distributive for the additive structure of the left-module (so giving the vectors a ring structure) and that is also bilinear under the scalar product. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Assertion df-assa
|- AssAlg = { w e. ( LMod i^i Ring ) | [. ( Scalar ` w ) / f ]. ( f e. CRing /\ A. r e. ( Base ` f ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 casa
 |-  AssAlg
1 vw
 |-  w
2 clmod
 |-  LMod
3 crg
 |-  Ring
4 2 3 cin
 |-  ( LMod i^i Ring )
5 csca
 |-  Scalar
6 1 cv
 |-  w
7 6 5 cfv
 |-  ( Scalar ` w )
8 vf
 |-  f
9 8 cv
 |-  f
10 ccrg
 |-  CRing
11 9 10 wcel
 |-  f e. CRing
12 vr
 |-  r
13 cbs
 |-  Base
14 9 13 cfv
 |-  ( Base ` f )
15 vx
 |-  x
16 6 13 cfv
 |-  ( Base ` w )
17 vy
 |-  y
18 cvsca
 |-  .s
19 6 18 cfv
 |-  ( .s ` w )
20 vs
 |-  s
21 cmulr
 |-  .r
22 6 21 cfv
 |-  ( .r ` w )
23 vt
 |-  t
24 12 cv
 |-  r
25 20 cv
 |-  s
26 15 cv
 |-  x
27 24 26 25 co
 |-  ( r s x )
28 23 cv
 |-  t
29 17 cv
 |-  y
30 27 29 28 co
 |-  ( ( r s x ) t y )
31 26 29 28 co
 |-  ( x t y )
32 24 31 25 co
 |-  ( r s ( x t y ) )
33 30 32 wceq
 |-  ( ( r s x ) t y ) = ( r s ( x t y ) )
34 24 29 25 co
 |-  ( r s y )
35 26 34 28 co
 |-  ( x t ( r s y ) )
36 35 32 wceq
 |-  ( x t ( r s y ) ) = ( r s ( x t y ) )
37 33 36 wa
 |-  ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) )
38 37 23 22 wsbc
 |-  [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) )
39 38 20 19 wsbc
 |-  [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) )
40 39 17 16 wral
 |-  A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) )
41 40 15 16 wral
 |-  A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) )
42 41 12 14 wral
 |-  A. r e. ( Base ` f ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) )
43 11 42 wa
 |-  ( f e. CRing /\ A. r e. ( Base ` f ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) )
44 43 8 7 wsbc
 |-  [. ( Scalar ` w ) / f ]. ( f e. CRing /\ A. r e. ( Base ` f ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) )
45 44 1 4 crab
 |-  { w e. ( LMod i^i Ring ) | [. ( Scalar ` w ) / f ]. ( f e. CRing /\ A. r e. ( Base ` f ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) ) }
46 0 45 wceq
 |-  AssAlg = { w e. ( LMod i^i Ring ) | [. ( Scalar ` w ) / f ]. ( f e. CRing /\ A. r e. ( Base ` f ) A. x e. ( Base ` w ) A. y e. ( Base ` w ) [. ( .s ` w ) / s ]. [. ( .r ` w ) / t ]. ( ( ( r s x ) t y ) = ( r s ( x t y ) ) /\ ( x t ( r s y ) ) = ( r s ( x t y ) ) ) ) }