| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cal |
|- AtLat |
| 1 |
|
vk |
|- k |
| 2 |
|
clat |
|- Lat |
| 3 |
|
cbs |
|- Base |
| 4 |
1
|
cv |
|- k |
| 5 |
4 3
|
cfv |
|- ( Base ` k ) |
| 6 |
|
cglb |
|- glb |
| 7 |
4 6
|
cfv |
|- ( glb ` k ) |
| 8 |
7
|
cdm |
|- dom ( glb ` k ) |
| 9 |
5 8
|
wcel |
|- ( Base ` k ) e. dom ( glb ` k ) |
| 10 |
|
vx |
|- x |
| 11 |
10
|
cv |
|- x |
| 12 |
|
cp0 |
|- 0. |
| 13 |
4 12
|
cfv |
|- ( 0. ` k ) |
| 14 |
11 13
|
wne |
|- x =/= ( 0. ` k ) |
| 15 |
|
vp |
|- p |
| 16 |
|
catm |
|- Atoms |
| 17 |
4 16
|
cfv |
|- ( Atoms ` k ) |
| 18 |
15
|
cv |
|- p |
| 19 |
|
cple |
|- le |
| 20 |
4 19
|
cfv |
|- ( le ` k ) |
| 21 |
18 11 20
|
wbr |
|- p ( le ` k ) x |
| 22 |
21 15 17
|
wrex |
|- E. p e. ( Atoms ` k ) p ( le ` k ) x |
| 23 |
14 22
|
wi |
|- ( x =/= ( 0. ` k ) -> E. p e. ( Atoms ` k ) p ( le ` k ) x ) |
| 24 |
23 10 5
|
wral |
|- A. x e. ( Base ` k ) ( x =/= ( 0. ` k ) -> E. p e. ( Atoms ` k ) p ( le ` k ) x ) |
| 25 |
9 24
|
wa |
|- ( ( Base ` k ) e. dom ( glb ` k ) /\ A. x e. ( Base ` k ) ( x =/= ( 0. ` k ) -> E. p e. ( Atoms ` k ) p ( le ` k ) x ) ) |
| 26 |
25 1 2
|
crab |
|- { k e. Lat | ( ( Base ` k ) e. dom ( glb ` k ) /\ A. x e. ( Base ` k ) ( x =/= ( 0. ` k ) -> E. p e. ( Atoms ` k ) p ( le ` k ) x ) ) } |
| 27 |
0 26
|
wceq |
|- AtLat = { k e. Lat | ( ( Base ` k ) e. dom ( glb ` k ) /\ A. x e. ( Base ` k ) ( x =/= ( 0. ` k ) -> E. p e. ( Atoms ` k ) p ( le ` k ) x ) ) } |