Step |
Hyp |
Ref |
Expression |
0 |
|
cend |
|- End |
1 |
|
vc |
|- c |
2 |
|
ccat |
|- Cat |
3 |
|
vx |
|- x |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- c |
6 |
5 4
|
cfv |
|- ( Base ` c ) |
7 |
|
cnx |
|- ndx |
8 |
7 4
|
cfv |
|- ( Base ` ndx ) |
9 |
3
|
cv |
|- x |
10 |
|
chom |
|- Hom |
11 |
5 10
|
cfv |
|- ( Hom ` c ) |
12 |
9 9 11
|
co |
|- ( x ( Hom ` c ) x ) |
13 |
8 12
|
cop |
|- <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. |
14 |
|
cplusg |
|- +g |
15 |
7 14
|
cfv |
|- ( +g ` ndx ) |
16 |
9 9
|
cop |
|- <. x , x >. |
17 |
|
cco |
|- comp |
18 |
5 17
|
cfv |
|- ( comp ` c ) |
19 |
16 9 18
|
co |
|- ( <. x , x >. ( comp ` c ) x ) |
20 |
15 19
|
cop |
|- <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. |
21 |
13 20
|
cpr |
|- { <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. } |
22 |
3 6 21
|
cmpt |
|- ( x e. ( Base ` c ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. } ) |
23 |
1 2 22
|
cmpt |
|- ( c e. Cat |-> ( x e. ( Base ` c ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. } ) ) |
24 |
0 23
|
wceq |
|- End = ( c e. Cat |-> ( x e. ( Base ` c ) |-> { <. ( Base ` ndx ) , ( x ( Hom ` c ) x ) >. , <. ( +g ` ndx ) , ( <. x , x >. ( comp ` c ) x ) >. } ) ) |