Metamath Proof Explorer


Definition df-bj-mo

Description: Definition of the uniqueness quantifier which is correct on the empty domain. Instead of the fresh variable z , one could save a dummy variable by using x or y at the cost of having nested quantifiers on the same variable. (Contributed by BJ, 12-Mar-2023)

Ref Expression
Assertion df-bj-mo
|- ( E** x ph <-> A. z E. y A. x ( ph -> x = y ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx
 |-  x
1 wph
 |-  ph
2 1 0 wmoo
 |-  E** x ph
3 vz
 |-  z
4 vy
 |-  y
5 0 cv
 |-  x
6 4 cv
 |-  y
7 5 6 wceq
 |-  x = y
8 1 7 wi
 |-  ( ph -> x = y )
9 8 0 wal
 |-  A. x ( ph -> x = y )
10 9 4 wex
 |-  E. y A. x ( ph -> x = y )
11 10 3 wal
 |-  A. z E. y A. x ( ph -> x = y )
12 2 11 wb
 |-  ( E** x ph <-> A. z E. y A. x ( ph -> x = y ) )