Description: Define the class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-blo | |- BLnOp = ( u e. NrmCVec , w e. NrmCVec |-> { t e. ( u LnOp w ) | ( ( u normOpOLD w ) ` t ) < +oo } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cblo | |- BLnOp |
|
1 | vu | |- u |
|
2 | cnv | |- NrmCVec |
|
3 | vw | |- w |
|
4 | vt | |- t |
|
5 | 1 | cv | |- u |
6 | clno | |- LnOp |
|
7 | 3 | cv | |- w |
8 | 5 7 6 | co | |- ( u LnOp w ) |
9 | cnmoo | |- normOpOLD |
|
10 | 5 7 9 | co | |- ( u normOpOLD w ) |
11 | 4 | cv | |- t |
12 | 11 10 | cfv | |- ( ( u normOpOLD w ) ` t ) |
13 | clt | |- < |
|
14 | cpnf | |- +oo |
|
15 | 12 14 13 | wbr | |- ( ( u normOpOLD w ) ` t ) < +oo |
16 | 15 4 8 | crab | |- { t e. ( u LnOp w ) | ( ( u normOpOLD w ) ` t ) < +oo } |
17 | 1 3 2 2 16 | cmpo | |- ( u e. NrmCVec , w e. NrmCVec |-> { t e. ( u LnOp w ) | ( ( u normOpOLD w ) ` t ) < +oo } ) |
18 | 0 17 | wceq | |- BLnOp = ( u e. NrmCVec , w e. NrmCVec |-> { t e. ( u LnOp w ) | ( ( u normOpOLD w ) ` t ) < +oo } ) |