Metamath Proof Explorer


Definition df-blo

Description: Define the class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007) (New usage is discouraged.)

Ref Expression
Assertion df-blo
|- BLnOp = ( u e. NrmCVec , w e. NrmCVec |-> { t e. ( u LnOp w ) | ( ( u normOpOLD w ) ` t ) < +oo } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cblo
 |-  BLnOp
1 vu
 |-  u
2 cnv
 |-  NrmCVec
3 vw
 |-  w
4 vt
 |-  t
5 1 cv
 |-  u
6 clno
 |-  LnOp
7 3 cv
 |-  w
8 5 7 6 co
 |-  ( u LnOp w )
9 cnmoo
 |-  normOpOLD
10 5 7 9 co
 |-  ( u normOpOLD w )
11 4 cv
 |-  t
12 11 10 cfv
 |-  ( ( u normOpOLD w ) ` t )
13 clt
 |-  <
14 cpnf
 |-  +oo
15 12 14 13 wbr
 |-  ( ( u normOpOLD w ) ` t ) < +oo
16 15 4 8 crab
 |-  { t e. ( u LnOp w ) | ( ( u normOpOLD w ) ` t ) < +oo }
17 1 3 2 2 16 cmpo
 |-  ( u e. NrmCVec , w e. NrmCVec |-> { t e. ( u LnOp w ) | ( ( u normOpOLD w ) ` t ) < +oo } )
18 0 17 wceq
 |-  BLnOp = ( u e. NrmCVec , w e. NrmCVec |-> { t e. ( u LnOp w ) | ( ( u normOpOLD w ) ` t ) < +oo } )