Description: Define the class of bounded linear operators between two normed complex vector spaces. (Contributed by NM, 6-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-blo | |- BLnOp = ( u e. NrmCVec , w e. NrmCVec |-> { t e. ( u LnOp w ) | ( ( u normOpOLD w ) ` t ) < +oo } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cblo | |- BLnOp | |
| 1 | vu | |- u | |
| 2 | cnv | |- NrmCVec | |
| 3 | vw | |- w | |
| 4 | vt | |- t | |
| 5 | 1 | cv | |- u | 
| 6 | clno | |- LnOp | |
| 7 | 3 | cv | |- w | 
| 8 | 5 7 6 | co | |- ( u LnOp w ) | 
| 9 | cnmoo | |- normOpOLD | |
| 10 | 5 7 9 | co | |- ( u normOpOLD w ) | 
| 11 | 4 | cv | |- t | 
| 12 | 11 10 | cfv | |- ( ( u normOpOLD w ) ` t ) | 
| 13 | clt | |- < | |
| 14 | cpnf | |- +oo | |
| 15 | 12 14 13 | wbr | |- ( ( u normOpOLD w ) ` t ) < +oo | 
| 16 | 15 4 8 | crab |  |-  { t e. ( u LnOp w ) | ( ( u normOpOLD w ) ` t ) < +oo } | 
| 17 | 1 3 2 2 16 | cmpo |  |-  ( u e. NrmCVec , w e. NrmCVec |-> { t e. ( u LnOp w ) | ( ( u normOpOLD w ) ` t ) < +oo } ) | 
| 18 | 0 17 | wceq |  |-  BLnOp = ( u e. NrmCVec , w e. NrmCVec |-> { t e. ( u LnOp w ) | ( ( u normOpOLD w ) ` t ) < +oo } ) |