Description: Define the class of all Banach spaces. A Banach space is a normed vector space such that both the vector space and the scalar field are complete under their respective norm-induced metrics. (Contributed by NM, 5-Dec-2006) (Revised by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-bn | |- Ban = { w e. ( NrmVec i^i CMetSp ) | ( Scalar ` w ) e. CMetSp } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cbn | |- Ban |
|
1 | vw | |- w |
|
2 | cnvc | |- NrmVec |
|
3 | ccms | |- CMetSp |
|
4 | 2 3 | cin | |- ( NrmVec i^i CMetSp ) |
5 | csca | |- Scalar |
|
6 | 1 | cv | |- w |
7 | 6 5 | cfv | |- ( Scalar ` w ) |
8 | 7 3 | wcel | |- ( Scalar ` w ) e. CMetSp |
9 | 8 1 4 | crab | |- { w e. ( NrmVec i^i CMetSp ) | ( Scalar ` w ) e. CMetSp } |
10 | 0 9 | wceq | |- Ban = { w e. ( NrmVec i^i CMetSp ) | ( Scalar ` w ) e. CMetSp } |