Metamath Proof Explorer


Definition df-bn

Description: Define the class of all Banach spaces. A Banach space is a normed vector space such that both the vector space and the scalar field are complete under their respective norm-induced metrics. (Contributed by NM, 5-Dec-2006) (Revised by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion df-bn
|- Ban = { w e. ( NrmVec i^i CMetSp ) | ( Scalar ` w ) e. CMetSp }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cbn
 |-  Ban
1 vw
 |-  w
2 cnvc
 |-  NrmVec
3 ccms
 |-  CMetSp
4 2 3 cin
 |-  ( NrmVec i^i CMetSp )
5 csca
 |-  Scalar
6 1 cv
 |-  w
7 6 5 cfv
 |-  ( Scalar ` w )
8 7 3 wcel
 |-  ( Scalar ` w ) e. CMetSp
9 8 1 4 crab
 |-  { w e. ( NrmVec i^i CMetSp ) | ( Scalar ` w ) e. CMetSp }
10 0 9 wceq
 |-  Ban = { w e. ( NrmVec i^i CMetSp ) | ( Scalar ` w ) e. CMetSp }