Description: Define the class of all Banach spaces. A Banach space is a normed vector space such that both the vector space and the scalar field are complete under their respective norm-induced metrics. (Contributed by NM, 5-Dec-2006) (Revised by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-bn | |- Ban = { w e. ( NrmVec i^i CMetSp ) | ( Scalar ` w ) e. CMetSp } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | cbn | |- Ban | |
| 1 | vw | |- w | |
| 2 | cnvc | |- NrmVec | |
| 3 | ccms | |- CMetSp | |
| 4 | 2 3 | cin | |- ( NrmVec i^i CMetSp ) | 
| 5 | csca | |- Scalar | |
| 6 | 1 | cv | |- w | 
| 7 | 6 5 | cfv | |- ( Scalar ` w ) | 
| 8 | 7 3 | wcel | |- ( Scalar ` w ) e. CMetSp | 
| 9 | 8 1 4 | crab |  |-  { w e. ( NrmVec i^i CMetSp ) | ( Scalar ` w ) e. CMetSp } | 
| 10 | 0 9 | wceq |  |-  Ban = { w e. ( NrmVec i^i CMetSp ) | ( Scalar ` w ) e. CMetSp } |