| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cbnd |
|- Bnd |
| 1 |
|
vx |
|- x |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vm |
|- m |
| 4 |
|
cmet |
|- Met |
| 5 |
1
|
cv |
|- x |
| 6 |
5 4
|
cfv |
|- ( Met ` x ) |
| 7 |
|
vy |
|- y |
| 8 |
|
vr |
|- r |
| 9 |
|
crp |
|- RR+ |
| 10 |
7
|
cv |
|- y |
| 11 |
|
cbl |
|- ball |
| 12 |
3
|
cv |
|- m |
| 13 |
12 11
|
cfv |
|- ( ball ` m ) |
| 14 |
8
|
cv |
|- r |
| 15 |
10 14 13
|
co |
|- ( y ( ball ` m ) r ) |
| 16 |
5 15
|
wceq |
|- x = ( y ( ball ` m ) r ) |
| 17 |
16 8 9
|
wrex |
|- E. r e. RR+ x = ( y ( ball ` m ) r ) |
| 18 |
17 7 5
|
wral |
|- A. y e. x E. r e. RR+ x = ( y ( ball ` m ) r ) |
| 19 |
18 3 6
|
crab |
|- { m e. ( Met ` x ) | A. y e. x E. r e. RR+ x = ( y ( ball ` m ) r ) } |
| 20 |
1 2 19
|
cmpt |
|- ( x e. _V |-> { m e. ( Met ` x ) | A. y e. x E. r e. RR+ x = ( y ( ball ` m ) r ) } ) |
| 21 |
0 20
|
wceq |
|- Bnd = ( x e. _V |-> { m e. ( Met ` x ) | A. y e. x E. r e. RR+ x = ( y ( ball ` m ) r ) } ) |