Metamath Proof Explorer


Definition df-bnd

Description: Define the class of bounded metrics. A metric space is bounded iff it can be covered by a single ball. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion df-bnd
|- Bnd = ( x e. _V |-> { m e. ( Met ` x ) | A. y e. x E. r e. RR+ x = ( y ( ball ` m ) r ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cbnd
 |-  Bnd
1 vx
 |-  x
2 cvv
 |-  _V
3 vm
 |-  m
4 cmet
 |-  Met
5 1 cv
 |-  x
6 5 4 cfv
 |-  ( Met ` x )
7 vy
 |-  y
8 vr
 |-  r
9 crp
 |-  RR+
10 7 cv
 |-  y
11 cbl
 |-  ball
12 3 cv
 |-  m
13 12 11 cfv
 |-  ( ball ` m )
14 8 cv
 |-  r
15 10 14 13 co
 |-  ( y ( ball ` m ) r )
16 5 15 wceq
 |-  x = ( y ( ball ` m ) r )
17 16 8 9 wrex
 |-  E. r e. RR+ x = ( y ( ball ` m ) r )
18 17 7 5 wral
 |-  A. y e. x E. r e. RR+ x = ( y ( ball ` m ) r )
19 18 3 6 crab
 |-  { m e. ( Met ` x ) | A. y e. x E. r e. RR+ x = ( y ( ball ` m ) r ) }
20 1 2 19 cmpt
 |-  ( x e. _V |-> { m e. ( Met ` x ) | A. y e. x E. r e. RR+ x = ( y ( ball ` m ) r ) } )
21 0 20 wceq
 |-  Bnd = ( x e. _V |-> { m e. ( Met ` x ) | A. y e. x E. r e. RR+ x = ( y ( ball ` m ) r ) } )