Step |
Hyp |
Ref |
Expression |
0 |
|
cbnd |
|- Bnd |
1 |
|
vx |
|- x |
2 |
|
cvv |
|- _V |
3 |
|
vm |
|- m |
4 |
|
cmet |
|- Met |
5 |
1
|
cv |
|- x |
6 |
5 4
|
cfv |
|- ( Met ` x ) |
7 |
|
vy |
|- y |
8 |
|
vr |
|- r |
9 |
|
crp |
|- RR+ |
10 |
7
|
cv |
|- y |
11 |
|
cbl |
|- ball |
12 |
3
|
cv |
|- m |
13 |
12 11
|
cfv |
|- ( ball ` m ) |
14 |
8
|
cv |
|- r |
15 |
10 14 13
|
co |
|- ( y ( ball ` m ) r ) |
16 |
5 15
|
wceq |
|- x = ( y ( ball ` m ) r ) |
17 |
16 8 9
|
wrex |
|- E. r e. RR+ x = ( y ( ball ` m ) r ) |
18 |
17 7 5
|
wral |
|- A. y e. x E. r e. RR+ x = ( y ( ball ` m ) r ) |
19 |
18 3 6
|
crab |
|- { m e. ( Met ` x ) | A. y e. x E. r e. RR+ x = ( y ( ball ` m ) r ) } |
20 |
1 2 19
|
cmpt |
|- ( x e. _V |-> { m e. ( Met ` x ) | A. y e. x E. r e. RR+ x = ( y ( ball ` m ) r ) } ) |
21 |
0 20
|
wceq |
|- Bnd = ( x e. _V |-> { m e. ( Met ` x ) | A. y e. x E. r e. RR+ x = ( y ( ball ` m ) r ) } ) |