Metamath Proof Explorer


Definition df-bnj14

Description: Define the function giving: the class of all elements of A that are "smaller" than X according to R . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion df-bnj14
|- _pred ( X , A , R ) = { y e. A | y R X }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cX
 |-  X
1 cA
 |-  A
2 cR
 |-  R
3 1 2 0 c-bnj14
 |-  _pred ( X , A , R )
4 vy
 |-  y
5 4 cv
 |-  y
6 5 0 2 wbr
 |-  y R X
7 6 4 1 crab
 |-  { y e. A | y R X }
8 3 7 wceq
 |-  _pred ( X , A , R ) = { y e. A | y R X }