| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cX |  |-  X | 
						
							| 1 |  | cA |  |-  A | 
						
							| 2 |  | cR |  |-  R | 
						
							| 3 | 1 2 0 | c-bnj18 |  |-  _trCl ( X , A , R ) | 
						
							| 4 |  | vf |  |-  f | 
						
							| 5 |  | vn |  |-  n | 
						
							| 6 |  | com |  |-  _om | 
						
							| 7 |  | c0 |  |-  (/) | 
						
							| 8 | 7 | csn |  |-  { (/) } | 
						
							| 9 | 6 8 | cdif |  |-  ( _om \ { (/) } ) | 
						
							| 10 | 4 | cv |  |-  f | 
						
							| 11 | 5 | cv |  |-  n | 
						
							| 12 | 10 11 | wfn |  |-  f Fn n | 
						
							| 13 | 7 10 | cfv |  |-  ( f ` (/) ) | 
						
							| 14 | 1 2 0 | c-bnj14 |  |-  _pred ( X , A , R ) | 
						
							| 15 | 13 14 | wceq |  |-  ( f ` (/) ) = _pred ( X , A , R ) | 
						
							| 16 |  | vi |  |-  i | 
						
							| 17 | 16 | cv |  |-  i | 
						
							| 18 | 17 | csuc |  |-  suc i | 
						
							| 19 | 18 11 | wcel |  |-  suc i e. n | 
						
							| 20 | 18 10 | cfv |  |-  ( f ` suc i ) | 
						
							| 21 |  | vy |  |-  y | 
						
							| 22 | 17 10 | cfv |  |-  ( f ` i ) | 
						
							| 23 | 21 | cv |  |-  y | 
						
							| 24 | 1 2 23 | c-bnj14 |  |-  _pred ( y , A , R ) | 
						
							| 25 | 21 22 24 | ciun |  |-  U_ y e. ( f ` i ) _pred ( y , A , R ) | 
						
							| 26 | 20 25 | wceq |  |-  ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) | 
						
							| 27 | 19 26 | wi |  |-  ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) | 
						
							| 28 | 27 16 6 | wral |  |-  A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) | 
						
							| 29 | 12 15 28 | w3a |  |-  ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) | 
						
							| 30 | 29 5 9 | wrex |  |-  E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) | 
						
							| 31 | 30 4 | cab |  |-  { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } | 
						
							| 32 | 10 | cdm |  |-  dom f | 
						
							| 33 | 16 32 22 | ciun |  |-  U_ i e. dom f ( f ` i ) | 
						
							| 34 | 4 31 33 | ciun |  |-  U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) | 
						
							| 35 | 3 34 | wceq |  |-  _trCl ( X , A , R ) = U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) |