Step |
Hyp |
Ref |
Expression |
0 |
|
cX |
|- X |
1 |
|
cA |
|- A |
2 |
|
cR |
|- R |
3 |
1 2 0
|
c-bnj18 |
|- _trCl ( X , A , R ) |
4 |
|
vf |
|- f |
5 |
|
vn |
|- n |
6 |
|
com |
|- _om |
7 |
|
c0 |
|- (/) |
8 |
7
|
csn |
|- { (/) } |
9 |
6 8
|
cdif |
|- ( _om \ { (/) } ) |
10 |
4
|
cv |
|- f |
11 |
5
|
cv |
|- n |
12 |
10 11
|
wfn |
|- f Fn n |
13 |
7 10
|
cfv |
|- ( f ` (/) ) |
14 |
1 2 0
|
c-bnj14 |
|- _pred ( X , A , R ) |
15 |
13 14
|
wceq |
|- ( f ` (/) ) = _pred ( X , A , R ) |
16 |
|
vi |
|- i |
17 |
16
|
cv |
|- i |
18 |
17
|
csuc |
|- suc i |
19 |
18 11
|
wcel |
|- suc i e. n |
20 |
18 10
|
cfv |
|- ( f ` suc i ) |
21 |
|
vy |
|- y |
22 |
17 10
|
cfv |
|- ( f ` i ) |
23 |
21
|
cv |
|- y |
24 |
1 2 23
|
c-bnj14 |
|- _pred ( y , A , R ) |
25 |
21 22 24
|
ciun |
|- U_ y e. ( f ` i ) _pred ( y , A , R ) |
26 |
20 25
|
wceq |
|- ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) |
27 |
19 26
|
wi |
|- ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) |
28 |
27 16 6
|
wral |
|- A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) |
29 |
12 15 28
|
w3a |
|- ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
30 |
29 5 9
|
wrex |
|- E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) |
31 |
30 4
|
cab |
|- { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } |
32 |
10
|
cdm |
|- dom f |
33 |
16 32 22
|
ciun |
|- U_ i e. dom f ( f ` i ) |
34 |
4 31 33
|
ciun |
|- U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) |
35 |
3 34
|
wceq |
|- _trCl ( X , A , R ) = U_ f e. { f | E. n e. ( _om \ { (/) } ) ( f Fn n /\ ( f ` (/) ) = _pred ( X , A , R ) /\ A. i e. _om ( suc i e. n -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) } U_ i e. dom f ( f ` i ) |