| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cbtwn |
|- Btwn |
| 1 |
|
vx |
|- x |
| 2 |
|
vz |
|- z |
| 3 |
|
vy |
|- y |
| 4 |
|
vn |
|- n |
| 5 |
|
cn |
|- NN |
| 6 |
1
|
cv |
|- x |
| 7 |
|
cee |
|- EE |
| 8 |
4
|
cv |
|- n |
| 9 |
8 7
|
cfv |
|- ( EE ` n ) |
| 10 |
6 9
|
wcel |
|- x e. ( EE ` n ) |
| 11 |
2
|
cv |
|- z |
| 12 |
11 9
|
wcel |
|- z e. ( EE ` n ) |
| 13 |
3
|
cv |
|- y |
| 14 |
13 9
|
wcel |
|- y e. ( EE ` n ) |
| 15 |
10 12 14
|
w3a |
|- ( x e. ( EE ` n ) /\ z e. ( EE ` n ) /\ y e. ( EE ` n ) ) |
| 16 |
|
vt |
|- t |
| 17 |
|
cc0 |
|- 0 |
| 18 |
|
cicc |
|- [,] |
| 19 |
|
c1 |
|- 1 |
| 20 |
17 19 18
|
co |
|- ( 0 [,] 1 ) |
| 21 |
|
vi |
|- i |
| 22 |
|
cfz |
|- ... |
| 23 |
19 8 22
|
co |
|- ( 1 ... n ) |
| 24 |
21
|
cv |
|- i |
| 25 |
24 13
|
cfv |
|- ( y ` i ) |
| 26 |
|
cmin |
|- - |
| 27 |
16
|
cv |
|- t |
| 28 |
19 27 26
|
co |
|- ( 1 - t ) |
| 29 |
|
cmul |
|- x. |
| 30 |
24 6
|
cfv |
|- ( x ` i ) |
| 31 |
28 30 29
|
co |
|- ( ( 1 - t ) x. ( x ` i ) ) |
| 32 |
|
caddc |
|- + |
| 33 |
24 11
|
cfv |
|- ( z ` i ) |
| 34 |
27 33 29
|
co |
|- ( t x. ( z ` i ) ) |
| 35 |
31 34 32
|
co |
|- ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) |
| 36 |
25 35
|
wceq |
|- ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) |
| 37 |
36 21 23
|
wral |
|- A. i e. ( 1 ... n ) ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) |
| 38 |
37 16 20
|
wrex |
|- E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... n ) ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) |
| 39 |
15 38
|
wa |
|- ( ( x e. ( EE ` n ) /\ z e. ( EE ` n ) /\ y e. ( EE ` n ) ) /\ E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... n ) ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) ) |
| 40 |
39 4 5
|
wrex |
|- E. n e. NN ( ( x e. ( EE ` n ) /\ z e. ( EE ` n ) /\ y e. ( EE ` n ) ) /\ E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... n ) ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) ) |
| 41 |
40 1 2 3
|
coprab |
|- { <. <. x , z >. , y >. | E. n e. NN ( ( x e. ( EE ` n ) /\ z e. ( EE ` n ) /\ y e. ( EE ` n ) ) /\ E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... n ) ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) ) } |
| 42 |
41
|
ccnv |
|- `' { <. <. x , z >. , y >. | E. n e. NN ( ( x e. ( EE ` n ) /\ z e. ( EE ` n ) /\ y e. ( EE ` n ) ) /\ E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... n ) ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) ) } |
| 43 |
0 42
|
wceq |
|- Btwn = `' { <. <. x , z >. , y >. | E. n e. NN ( ( x e. ( EE ` n ) /\ z e. ( EE ` n ) /\ y e. ( EE ` n ) ) /\ E. t e. ( 0 [,] 1 ) A. i e. ( 1 ... n ) ( y ` i ) = ( ( ( 1 - t ) x. ( x ` i ) ) + ( t x. ( z ` i ) ) ) ) } |