| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccau |
|- Cau |
| 1 |
|
vd |
|- d |
| 2 |
|
cxmet |
|- *Met |
| 3 |
2
|
crn |
|- ran *Met |
| 4 |
3
|
cuni |
|- U. ran *Met |
| 5 |
|
vf |
|- f |
| 6 |
1
|
cv |
|- d |
| 7 |
6
|
cdm |
|- dom d |
| 8 |
7
|
cdm |
|- dom dom d |
| 9 |
|
cpm |
|- ^pm |
| 10 |
|
cc |
|- CC |
| 11 |
8 10 9
|
co |
|- ( dom dom d ^pm CC ) |
| 12 |
|
vx |
|- x |
| 13 |
|
crp |
|- RR+ |
| 14 |
|
vj |
|- j |
| 15 |
|
cz |
|- ZZ |
| 16 |
5
|
cv |
|- f |
| 17 |
|
cuz |
|- ZZ>= |
| 18 |
14
|
cv |
|- j |
| 19 |
18 17
|
cfv |
|- ( ZZ>= ` j ) |
| 20 |
16 19
|
cres |
|- ( f |` ( ZZ>= ` j ) ) |
| 21 |
18 16
|
cfv |
|- ( f ` j ) |
| 22 |
|
cbl |
|- ball |
| 23 |
6 22
|
cfv |
|- ( ball ` d ) |
| 24 |
12
|
cv |
|- x |
| 25 |
21 24 23
|
co |
|- ( ( f ` j ) ( ball ` d ) x ) |
| 26 |
19 25 20
|
wf |
|- ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` d ) x ) |
| 27 |
26 14 15
|
wrex |
|- E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` d ) x ) |
| 28 |
27 12 13
|
wral |
|- A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` d ) x ) |
| 29 |
28 5 11
|
crab |
|- { f e. ( dom dom d ^pm CC ) | A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` d ) x ) } |
| 30 |
1 4 29
|
cmpt |
|- ( d e. U. ran *Met |-> { f e. ( dom dom d ^pm CC ) | A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` d ) x ) } ) |
| 31 |
0 30
|
wceq |
|- Cau = ( d e. U. ran *Met |-> { f e. ( dom dom d ^pm CC ) | A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` d ) x ) } ) |