Metamath Proof Explorer


Definition df-cau

Description: Define the set of Cauchy sequences on a given extended metric space. (Contributed by NM, 8-Sep-2006)

Ref Expression
Assertion df-cau
|- Cau = ( d e. U. ran *Met |-> { f e. ( dom dom d ^pm CC ) | A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` d ) x ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccau
 |-  Cau
1 vd
 |-  d
2 cxmet
 |-  *Met
3 2 crn
 |-  ran *Met
4 3 cuni
 |-  U. ran *Met
5 vf
 |-  f
6 1 cv
 |-  d
7 6 cdm
 |-  dom d
8 7 cdm
 |-  dom dom d
9 cpm
 |-  ^pm
10 cc
 |-  CC
11 8 10 9 co
 |-  ( dom dom d ^pm CC )
12 vx
 |-  x
13 crp
 |-  RR+
14 vj
 |-  j
15 cz
 |-  ZZ
16 5 cv
 |-  f
17 cuz
 |-  ZZ>=
18 14 cv
 |-  j
19 18 17 cfv
 |-  ( ZZ>= ` j )
20 16 19 cres
 |-  ( f |` ( ZZ>= ` j ) )
21 18 16 cfv
 |-  ( f ` j )
22 cbl
 |-  ball
23 6 22 cfv
 |-  ( ball ` d )
24 12 cv
 |-  x
25 21 24 23 co
 |-  ( ( f ` j ) ( ball ` d ) x )
26 19 25 20 wf
 |-  ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` d ) x )
27 26 14 15 wrex
 |-  E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` d ) x )
28 27 12 13 wral
 |-  A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` d ) x )
29 28 5 11 crab
 |-  { f e. ( dom dom d ^pm CC ) | A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` d ) x ) }
30 1 4 29 cmpt
 |-  ( d e. U. ran *Met |-> { f e. ( dom dom d ^pm CC ) | A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` d ) x ) } )
31 0 30 wceq
 |-  Cau = ( d e. U. ran *Met |-> { f e. ( dom dom d ^pm CC ) | A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` d ) x ) } )