Metamath Proof Explorer


Definition df-cbn

Description: Define the class of all complex Banach spaces. (Contributed by NM, 5-Dec-2006) Use df-bn instead. (New usage is discouraged.)

Ref Expression
Assertion df-cbn
|- CBan = { u e. NrmCVec | ( IndMet ` u ) e. ( CMet ` ( BaseSet ` u ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccbn
 |-  CBan
1 vu
 |-  u
2 cnv
 |-  NrmCVec
3 cims
 |-  IndMet
4 1 cv
 |-  u
5 4 3 cfv
 |-  ( IndMet ` u )
6 ccmet
 |-  CMet
7 cba
 |-  BaseSet
8 4 7 cfv
 |-  ( BaseSet ` u )
9 8 6 cfv
 |-  ( CMet ` ( BaseSet ` u ) )
10 5 9 wcel
 |-  ( IndMet ` u ) e. ( CMet ` ( BaseSet ` u ) )
11 10 1 2 crab
 |-  { u e. NrmCVec | ( IndMet ` u ) e. ( CMet ` ( BaseSet ` u ) ) }
12 0 11 wceq
 |-  CBan = { u e. NrmCVec | ( IndMet ` u ) e. ( CMet ` ( BaseSet ` u ) ) }