| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccfil |  |-  CauFil | 
						
							| 1 |  | vd |  |-  d | 
						
							| 2 |  | cxmet |  |-  *Met | 
						
							| 3 | 2 | crn |  |-  ran *Met | 
						
							| 4 | 3 | cuni |  |-  U. ran *Met | 
						
							| 5 |  | vf |  |-  f | 
						
							| 6 |  | cfil |  |-  Fil | 
						
							| 7 | 1 | cv |  |-  d | 
						
							| 8 | 7 | cdm |  |-  dom d | 
						
							| 9 | 8 | cdm |  |-  dom dom d | 
						
							| 10 | 9 6 | cfv |  |-  ( Fil ` dom dom d ) | 
						
							| 11 |  | vx |  |-  x | 
						
							| 12 |  | crp |  |-  RR+ | 
						
							| 13 |  | vy |  |-  y | 
						
							| 14 | 5 | cv |  |-  f | 
						
							| 15 | 13 | cv |  |-  y | 
						
							| 16 | 15 15 | cxp |  |-  ( y X. y ) | 
						
							| 17 | 7 16 | cima |  |-  ( d " ( y X. y ) ) | 
						
							| 18 |  | cc0 |  |-  0 | 
						
							| 19 |  | cico |  |-  [,) | 
						
							| 20 | 11 | cv |  |-  x | 
						
							| 21 | 18 20 19 | co |  |-  ( 0 [,) x ) | 
						
							| 22 | 17 21 | wss |  |-  ( d " ( y X. y ) ) C_ ( 0 [,) x ) | 
						
							| 23 | 22 13 14 | wrex |  |-  E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) | 
						
							| 24 | 23 11 12 | wral |  |-  A. x e. RR+ E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) | 
						
							| 25 | 24 5 10 | crab |  |-  { f e. ( Fil ` dom dom d ) | A. x e. RR+ E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) } | 
						
							| 26 | 1 4 25 | cmpt |  |-  ( d e. U. ran *Met |-> { f e. ( Fil ` dom dom d ) | A. x e. RR+ E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) } ) | 
						
							| 27 | 0 26 | wceq |  |-  CauFil = ( d e. U. ran *Met |-> { f e. ( Fil ` dom dom d ) | A. x e. RR+ E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) } ) |