Metamath Proof Explorer


Definition df-cfilu

Description: Define the set of Cauchy filter bases on a uniform space. A Cauchy filter base is a filter base on the set such that for every entourage v , there is an element a of the filter "small enough in v " i.e. such that every pair { x , y } of points in a is related by v ". Definition 2 of BourbakiTop1 p. II.13. (Contributed by Thierry Arnoux, 16-Nov-2017)

Ref Expression
Assertion df-cfilu
|- CauFilU = ( u e. U. ran UnifOn |-> { f e. ( fBas ` dom U. u ) | A. v e. u E. a e. f ( a X. a ) C_ v } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccfilu
 |-  CauFilU
1 vu
 |-  u
2 cust
 |-  UnifOn
3 2 crn
 |-  ran UnifOn
4 3 cuni
 |-  U. ran UnifOn
5 vf
 |-  f
6 cfbas
 |-  fBas
7 1 cv
 |-  u
8 7 cuni
 |-  U. u
9 8 cdm
 |-  dom U. u
10 9 6 cfv
 |-  ( fBas ` dom U. u )
11 vv
 |-  v
12 va
 |-  a
13 5 cv
 |-  f
14 12 cv
 |-  a
15 14 14 cxp
 |-  ( a X. a )
16 11 cv
 |-  v
17 15 16 wss
 |-  ( a X. a ) C_ v
18 17 12 13 wrex
 |-  E. a e. f ( a X. a ) C_ v
19 18 11 7 wral
 |-  A. v e. u E. a e. f ( a X. a ) C_ v
20 19 5 10 crab
 |-  { f e. ( fBas ` dom U. u ) | A. v e. u E. a e. f ( a X. a ) C_ v }
21 1 4 20 cmpt
 |-  ( u e. U. ran UnifOn |-> { f e. ( fBas ` dom U. u ) | A. v e. u E. a e. f ( a X. a ) C_ v } )
22 0 21 wceq
 |-  CauFilU = ( u e. U. ran UnifOn |-> { f e. ( fBas ` dom U. u ) | A. v e. u E. a e. f ( a X. a ) C_ v } )