| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							ccgra | 
							 |-  cgrA  | 
						
						
							| 1 | 
							
								
							 | 
							vg | 
							 |-  g  | 
						
						
							| 2 | 
							
								
							 | 
							cvv | 
							 |-  _V  | 
						
						
							| 3 | 
							
								
							 | 
							va | 
							 |-  a  | 
						
						
							| 4 | 
							
								
							 | 
							vb | 
							 |-  b  | 
						
						
							| 5 | 
							
								
							 | 
							cbs | 
							 |-  Base  | 
						
						
							| 6 | 
							
								1
							 | 
							cv | 
							 |-  g  | 
						
						
							| 7 | 
							
								6 5
							 | 
							cfv | 
							 |-  ( Base ` g )  | 
						
						
							| 8 | 
							
								
							 | 
							vp | 
							 |-  p  | 
						
						
							| 9 | 
							
								
							 | 
							chlg | 
							 |-  hlG  | 
						
						
							| 10 | 
							
								6 9
							 | 
							cfv | 
							 |-  ( hlG ` g )  | 
						
						
							| 11 | 
							
								
							 | 
							vk | 
							 |-  k  | 
						
						
							| 12 | 
							
								3
							 | 
							cv | 
							 |-  a  | 
						
						
							| 13 | 
							
								8
							 | 
							cv | 
							 |-  p  | 
						
						
							| 14 | 
							
								
							 | 
							cmap | 
							 |-  ^m  | 
						
						
							| 15 | 
							
								
							 | 
							cc0 | 
							 |-  0  | 
						
						
							| 16 | 
							
								
							 | 
							cfzo | 
							 |-  ..^  | 
						
						
							| 17 | 
							
								
							 | 
							c3 | 
							 |-  3  | 
						
						
							| 18 | 
							
								15 17 16
							 | 
							co | 
							 |-  ( 0 ..^ 3 )  | 
						
						
							| 19 | 
							
								13 18 14
							 | 
							co | 
							 |-  ( p ^m ( 0 ..^ 3 ) )  | 
						
						
							| 20 | 
							
								12 19
							 | 
							wcel | 
							 |-  a e. ( p ^m ( 0 ..^ 3 ) )  | 
						
						
							| 21 | 
							
								4
							 | 
							cv | 
							 |-  b  | 
						
						
							| 22 | 
							
								21 19
							 | 
							wcel | 
							 |-  b e. ( p ^m ( 0 ..^ 3 ) )  | 
						
						
							| 23 | 
							
								20 22
							 | 
							wa | 
							 |-  ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							vx | 
							 |-  x  | 
						
						
							| 25 | 
							
								
							 | 
							vy | 
							 |-  y  | 
						
						
							| 26 | 
							
								
							 | 
							ccgrg | 
							 |-  cgrG  | 
						
						
							| 27 | 
							
								6 26
							 | 
							cfv | 
							 |-  ( cgrG ` g )  | 
						
						
							| 28 | 
							
								24
							 | 
							cv | 
							 |-  x  | 
						
						
							| 29 | 
							
								
							 | 
							c1 | 
							 |-  1  | 
						
						
							| 30 | 
							
								29 21
							 | 
							cfv | 
							 |-  ( b ` 1 )  | 
						
						
							| 31 | 
							
								25
							 | 
							cv | 
							 |-  y  | 
						
						
							| 32 | 
							
								28 30 31
							 | 
							cs3 | 
							 |-  <" x ( b ` 1 ) y ">  | 
						
						
							| 33 | 
							
								12 32 27
							 | 
							wbr | 
							 |-  a ( cgrG ` g ) <" x ( b ` 1 ) y ">  | 
						
						
							| 34 | 
							
								11
							 | 
							cv | 
							 |-  k  | 
						
						
							| 35 | 
							
								30 34
							 | 
							cfv | 
							 |-  ( k ` ( b ` 1 ) )  | 
						
						
							| 36 | 
							
								15 21
							 | 
							cfv | 
							 |-  ( b ` 0 )  | 
						
						
							| 37 | 
							
								28 36 35
							 | 
							wbr | 
							 |-  x ( k ` ( b ` 1 ) ) ( b ` 0 )  | 
						
						
							| 38 | 
							
								
							 | 
							c2 | 
							 |-  2  | 
						
						
							| 39 | 
							
								38 21
							 | 
							cfv | 
							 |-  ( b ` 2 )  | 
						
						
							| 40 | 
							
								31 39 35
							 | 
							wbr | 
							 |-  y ( k ` ( b ` 1 ) ) ( b ` 2 )  | 
						
						
							| 41 | 
							
								33 37 40
							 | 
							w3a | 
							 |-  ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) )  | 
						
						
							| 42 | 
							
								41 25 13
							 | 
							wrex | 
							 |-  E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) )  | 
						
						
							| 43 | 
							
								42 24 13
							 | 
							wrex | 
							 |-  E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) )  | 
						
						
							| 44 | 
							
								23 43
							 | 
							wa | 
							 |-  ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) )  | 
						
						
							| 45 | 
							
								44 11 10
							 | 
							wsbc | 
							 |-  [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) )  | 
						
						
							| 46 | 
							
								45 8 7
							 | 
							wsbc | 
							 |-  [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) )  | 
						
						
							| 47 | 
							
								46 3 4
							 | 
							copab | 
							 |-  { <. a , b >. | [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) } | 
						
						
							| 48 | 
							
								1 2 47
							 | 
							cmpt | 
							 |-  ( g e. _V |-> { <. a , b >. | [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) | 
						
						
							| 49 | 
							
								0 48
							 | 
							wceq | 
							 |-  cgrA = ( g e. _V |-> { <. a , b >. | [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) |