Step |
Hyp |
Ref |
Expression |
0 |
|
ccgra |
|- cgrA |
1 |
|
vg |
|- g |
2 |
|
cvv |
|- _V |
3 |
|
va |
|- a |
4 |
|
vb |
|- b |
5 |
|
cbs |
|- Base |
6 |
1
|
cv |
|- g |
7 |
6 5
|
cfv |
|- ( Base ` g ) |
8 |
|
vp |
|- p |
9 |
|
chlg |
|- hlG |
10 |
6 9
|
cfv |
|- ( hlG ` g ) |
11 |
|
vk |
|- k |
12 |
3
|
cv |
|- a |
13 |
8
|
cv |
|- p |
14 |
|
cmap |
|- ^m |
15 |
|
cc0 |
|- 0 |
16 |
|
cfzo |
|- ..^ |
17 |
|
c3 |
|- 3 |
18 |
15 17 16
|
co |
|- ( 0 ..^ 3 ) |
19 |
13 18 14
|
co |
|- ( p ^m ( 0 ..^ 3 ) ) |
20 |
12 19
|
wcel |
|- a e. ( p ^m ( 0 ..^ 3 ) ) |
21 |
4
|
cv |
|- b |
22 |
21 19
|
wcel |
|- b e. ( p ^m ( 0 ..^ 3 ) ) |
23 |
20 22
|
wa |
|- ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) |
24 |
|
vx |
|- x |
25 |
|
vy |
|- y |
26 |
|
ccgrg |
|- cgrG |
27 |
6 26
|
cfv |
|- ( cgrG ` g ) |
28 |
24
|
cv |
|- x |
29 |
|
c1 |
|- 1 |
30 |
29 21
|
cfv |
|- ( b ` 1 ) |
31 |
25
|
cv |
|- y |
32 |
28 30 31
|
cs3 |
|- <" x ( b ` 1 ) y "> |
33 |
12 32 27
|
wbr |
|- a ( cgrG ` g ) <" x ( b ` 1 ) y "> |
34 |
11
|
cv |
|- k |
35 |
30 34
|
cfv |
|- ( k ` ( b ` 1 ) ) |
36 |
15 21
|
cfv |
|- ( b ` 0 ) |
37 |
28 36 35
|
wbr |
|- x ( k ` ( b ` 1 ) ) ( b ` 0 ) |
38 |
|
c2 |
|- 2 |
39 |
38 21
|
cfv |
|- ( b ` 2 ) |
40 |
31 39 35
|
wbr |
|- y ( k ` ( b ` 1 ) ) ( b ` 2 ) |
41 |
33 37 40
|
w3a |
|- ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) |
42 |
41 25 13
|
wrex |
|- E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) |
43 |
42 24 13
|
wrex |
|- E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) |
44 |
23 43
|
wa |
|- ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) |
45 |
44 11 10
|
wsbc |
|- [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) |
46 |
45 8 7
|
wsbc |
|- [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) |
47 |
46 3 4
|
copab |
|- { <. a , b >. | [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) } |
48 |
1 2 47
|
cmpt |
|- ( g e. _V |-> { <. a , b >. | [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) |
49 |
0 48
|
wceq |
|- cgrA = ( g e. _V |-> { <. a , b >. | [. ( Base ` g ) / p ]. [. ( hlG ` g ) / k ]. ( ( a e. ( p ^m ( 0 ..^ 3 ) ) /\ b e. ( p ^m ( 0 ..^ 3 ) ) ) /\ E. x e. p E. y e. p ( a ( cgrG ` g ) <" x ( b ` 1 ) y "> /\ x ( k ` ( b ` 1 ) ) ( b ` 0 ) /\ y ( k ` ( b ` 1 ) ) ( b ` 2 ) ) ) } ) |