Metamath Proof Explorer


Definition df-chr

Description: The characteristic of a ring is the smallest positive integer which is equal to 0 when interpreted in the ring, or 0 if there is no such positive integer. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Assertion df-chr
|- chr = ( g e. _V |-> ( ( od ` g ) ` ( 1r ` g ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cchr
 |-  chr
1 vg
 |-  g
2 cvv
 |-  _V
3 cod
 |-  od
4 1 cv
 |-  g
5 4 3 cfv
 |-  ( od ` g )
6 cur
 |-  1r
7 4 6 cfv
 |-  ( 1r ` g )
8 7 5 cfv
 |-  ( ( od ` g ) ` ( 1r ` g ) )
9 1 2 8 cmpt
 |-  ( g e. _V |-> ( ( od ` g ) ` ( 1r ` g ) ) )
10 0 9 wceq
 |-  chr = ( g e. _V |-> ( ( od ` g ) ` ( 1r ` g ) ) )