Metamath Proof Explorer


Definition df-cic

Description: Function returning the set of isomorphic objects for each category c . Definition 3.15 of Adamek p. 29. Analogous to the definition of the group isomorphism relation ~=g , see df-gic . (Contributed by AV, 4-Apr-2020)

Ref Expression
Assertion df-cic
|- ~=c = ( c e. Cat |-> ( ( Iso ` c ) supp (/) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccic
 |-  ~=c
1 vc
 |-  c
2 ccat
 |-  Cat
3 ciso
 |-  Iso
4 1 cv
 |-  c
5 4 3 cfv
 |-  ( Iso ` c )
6 csupp
 |-  supp
7 c0
 |-  (/)
8 5 7 6 co
 |-  ( ( Iso ` c ) supp (/) )
9 1 2 8 cmpt
 |-  ( c e. Cat |-> ( ( Iso ` c ) supp (/) ) )
10 0 9 wceq
 |-  ~=c = ( c e. Cat |-> ( ( Iso ` c ) supp (/) ) )