Description: Define the complex conjugate function. See cjcli for its closure and cjval for its value. (Contributed by NM, 9-May-1999) (Revised by Mario Carneiro, 6-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | df-cj | |- * = ( x e. CC |-> ( iota_ y e. CC ( ( x + y ) e. RR /\ ( _i x. ( x - y ) ) e. RR ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ccj | |- * |
|
1 | vx | |- x |
|
2 | cc | |- CC |
|
3 | vy | |- y |
|
4 | 1 | cv | |- x |
5 | caddc | |- + |
|
6 | 3 | cv | |- y |
7 | 4 6 5 | co | |- ( x + y ) |
8 | cr | |- RR |
|
9 | 7 8 | wcel | |- ( x + y ) e. RR |
10 | ci | |- _i |
|
11 | cmul | |- x. |
|
12 | cmin | |- - |
|
13 | 4 6 12 | co | |- ( x - y ) |
14 | 10 13 11 | co | |- ( _i x. ( x - y ) ) |
15 | 14 8 | wcel | |- ( _i x. ( x - y ) ) e. RR |
16 | 9 15 | wa | |- ( ( x + y ) e. RR /\ ( _i x. ( x - y ) ) e. RR ) |
17 | 16 3 2 | crio | |- ( iota_ y e. CC ( ( x + y ) e. RR /\ ( _i x. ( x - y ) ) e. RR ) ) |
18 | 1 2 17 | cmpt | |- ( x e. CC |-> ( iota_ y e. CC ( ( x + y ) e. RR /\ ( _i x. ( x - y ) ) e. RR ) ) ) |
19 | 0 18 | wceq | |- * = ( x e. CC |-> ( iota_ y e. CC ( ( x + y ) e. RR /\ ( _i x. ( x - y ) ) e. RR ) ) ) |