Metamath Proof Explorer


Definition df-clat

Description: Define the class of all complete lattices, where every subset of the base set has an LUB and a GLB. (Contributed by NM, 18-Oct-2012) (Revised by NM, 12-Sep-2018)

Ref Expression
Assertion df-clat
|- CLat = { p e. Poset | ( dom ( lub ` p ) = ~P ( Base ` p ) /\ dom ( glb ` p ) = ~P ( Base ` p ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccla
 |-  CLat
1 vp
 |-  p
2 cpo
 |-  Poset
3 club
 |-  lub
4 1 cv
 |-  p
5 4 3 cfv
 |-  ( lub ` p )
6 5 cdm
 |-  dom ( lub ` p )
7 cbs
 |-  Base
8 4 7 cfv
 |-  ( Base ` p )
9 8 cpw
 |-  ~P ( Base ` p )
10 6 9 wceq
 |-  dom ( lub ` p ) = ~P ( Base ` p )
11 cglb
 |-  glb
12 4 11 cfv
 |-  ( glb ` p )
13 12 cdm
 |-  dom ( glb ` p )
14 13 9 wceq
 |-  dom ( glb ` p ) = ~P ( Base ` p )
15 10 14 wa
 |-  ( dom ( lub ` p ) = ~P ( Base ` p ) /\ dom ( glb ` p ) = ~P ( Base ` p ) )
16 15 1 2 crab
 |-  { p e. Poset | ( dom ( lub ` p ) = ~P ( Base ` p ) /\ dom ( glb ` p ) = ~P ( Base ` p ) ) }
17 0 16 wceq
 |-  CLat = { p e. Poset | ( dom ( lub ` p ) = ~P ( Base ` p ) /\ dom ( glb ` p ) = ~P ( Base ` p ) ) }