Description: Define the class of all complete lattices, where every subset of the base set has an LUB and a GLB. (Contributed by NM, 18-Oct-2012) (Revised by NM, 12-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-clat | |- CLat = { p e. Poset | ( dom ( lub ` p ) = ~P ( Base ` p ) /\ dom ( glb ` p ) = ~P ( Base ` p ) ) } | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 0 | ccla | |- CLat  | 
						|
| 1 | vp | |- p  | 
						|
| 2 | cpo | |- Poset  | 
						|
| 3 | club | |- lub  | 
						|
| 4 | 1 | cv | |- p  | 
						
| 5 | 4 3 | cfv | |- ( lub ` p )  | 
						
| 6 | 5 | cdm | |- dom ( lub ` p )  | 
						
| 7 | cbs | |- Base  | 
						|
| 8 | 4 7 | cfv | |- ( Base ` p )  | 
						
| 9 | 8 | cpw | |- ~P ( Base ` p )  | 
						
| 10 | 6 9 | wceq | |- dom ( lub ` p ) = ~P ( Base ` p )  | 
						
| 11 | cglb | |- glb  | 
						|
| 12 | 4 11 | cfv | |- ( glb ` p )  | 
						
| 13 | 12 | cdm | |- dom ( glb ` p )  | 
						
| 14 | 13 9 | wceq | |- dom ( glb ` p ) = ~P ( Base ` p )  | 
						
| 15 | 10 14 | wa | |- ( dom ( lub ` p ) = ~P ( Base ` p ) /\ dom ( glb ` p ) = ~P ( Base ` p ) )  | 
						
| 16 | 15 1 2 | crab |  |-  { p e. Poset | ( dom ( lub ` p ) = ~P ( Base ` p ) /\ dom ( glb ` p ) = ~P ( Base ` p ) ) } | 
						
| 17 | 0 16 | wceq |  |-  CLat = { p e. Poset | ( dom ( lub ` p ) = ~P ( Base ` p ) /\ dom ( glb ` p ) = ~P ( Base ` p ) ) } |