| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cli |
|- ~~> |
| 1 |
|
vf |
|- f |
| 2 |
|
vy |
|- y |
| 3 |
2
|
cv |
|- y |
| 4 |
|
cc |
|- CC |
| 5 |
3 4
|
wcel |
|- y e. CC |
| 6 |
|
vx |
|- x |
| 7 |
|
crp |
|- RR+ |
| 8 |
|
vj |
|- j |
| 9 |
|
cz |
|- ZZ |
| 10 |
|
vk |
|- k |
| 11 |
|
cuz |
|- ZZ>= |
| 12 |
8
|
cv |
|- j |
| 13 |
12 11
|
cfv |
|- ( ZZ>= ` j ) |
| 14 |
1
|
cv |
|- f |
| 15 |
10
|
cv |
|- k |
| 16 |
15 14
|
cfv |
|- ( f ` k ) |
| 17 |
16 4
|
wcel |
|- ( f ` k ) e. CC |
| 18 |
|
cabs |
|- abs |
| 19 |
|
cmin |
|- - |
| 20 |
16 3 19
|
co |
|- ( ( f ` k ) - y ) |
| 21 |
20 18
|
cfv |
|- ( abs ` ( ( f ` k ) - y ) ) |
| 22 |
|
clt |
|- < |
| 23 |
6
|
cv |
|- x |
| 24 |
21 23 22
|
wbr |
|- ( abs ` ( ( f ` k ) - y ) ) < x |
| 25 |
17 24
|
wa |
|- ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) |
| 26 |
25 10 13
|
wral |
|- A. k e. ( ZZ>= ` j ) ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) |
| 27 |
26 8 9
|
wrex |
|- E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) |
| 28 |
27 6 7
|
wral |
|- A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) |
| 29 |
5 28
|
wa |
|- ( y e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) ) |
| 30 |
29 1 2
|
copab |
|- { <. f , y >. | ( y e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) ) } |
| 31 |
0 30
|
wceq |
|- ~~> = { <. f , y >. | ( y e. CC /\ A. x e. RR+ E. j e. ZZ A. k e. ( ZZ>= ` j ) ( ( f ` k ) e. CC /\ ( abs ` ( ( f ` k ) - y ) ) < x ) ) } |