Metamath Proof Explorer


Definition df-clnbgr

Description: Define the closedneighborhood resp. the class of all neighbors of a vertex (in a graph) and the vertex itself, see definition in section I.1 of Bollobas p. 3. The closed neighborhood of a vertex are all vertices which are connected with this vertex by an edge and the vertex itself (in contrast to an open neighborhood, see df-nbgr ). Alternatively, a closed neighborhood of a vertex could have been defined as its open neighborhood enhanced by the vertex itself, see dfclnbgr4 . This definition is applicable even for arbitrary hypergraphs. (Contributed by AV, 7-May-2025)

Ref Expression
Assertion df-clnbgr
|- ClNeighbVtx = ( g e. _V , v e. ( Vtx ` g ) |-> ( { v } u. { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cclnbgr
 |-  ClNeighbVtx
1 vg
 |-  g
2 cvv
 |-  _V
3 vv
 |-  v
4 cvtx
 |-  Vtx
5 1 cv
 |-  g
6 5 4 cfv
 |-  ( Vtx ` g )
7 3 cv
 |-  v
8 7 csn
 |-  { v }
9 vn
 |-  n
10 ve
 |-  e
11 cedg
 |-  Edg
12 5 11 cfv
 |-  ( Edg ` g )
13 9 cv
 |-  n
14 7 13 cpr
 |-  { v , n }
15 10 cv
 |-  e
16 14 15 wss
 |-  { v , n } C_ e
17 16 10 12 wrex
 |-  E. e e. ( Edg ` g ) { v , n } C_ e
18 17 9 6 crab
 |-  { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e }
19 8 18 cun
 |-  ( { v } u. { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e } )
20 1 3 2 6 19 cmpo
 |-  ( g e. _V , v e. ( Vtx ` g ) |-> ( { v } u. { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) )
21 0 20 wceq
 |-  ClNeighbVtx = ( g e. _V , v e. ( Vtx ` g ) |-> ( { v } u. { n e. ( Vtx ` g ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) )