Metamath Proof Explorer


Definition df-clwwlkn

Description: Define the set of all closed walks of a fixed length n as words over the set of vertices in a graph g . If 0 < n , such a word corresponds to the sequence p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0) as defined in df-clwlks . For n = 0 , the set is empty, see clwwlkn0 . (Contributed by Alexander van der Vekens, 20-Mar-2018) (Revised by AV, 24-Apr-2021) (Revised by AV, 22-Mar-2022)

Ref Expression
Assertion df-clwwlkn
|- ClWWalksN = ( n e. NN0 , g e. _V |-> { w e. ( ClWWalks ` g ) | ( # ` w ) = n } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cclwwlkn
 |-  ClWWalksN
1 vn
 |-  n
2 cn0
 |-  NN0
3 vg
 |-  g
4 cvv
 |-  _V
5 vw
 |-  w
6 cclwwlk
 |-  ClWWalks
7 3 cv
 |-  g
8 7 6 cfv
 |-  ( ClWWalks ` g )
9 chash
 |-  #
10 5 cv
 |-  w
11 10 9 cfv
 |-  ( # ` w )
12 1 cv
 |-  n
13 11 12 wceq
 |-  ( # ` w ) = n
14 13 5 8 crab
 |-  { w e. ( ClWWalks ` g ) | ( # ` w ) = n }
15 1 3 2 4 14 cmpo
 |-  ( n e. NN0 , g e. _V |-> { w e. ( ClWWalks ` g ) | ( # ` w ) = n } )
16 0 15 wceq
 |-  ClWWalksN = ( n e. NN0 , g e. _V |-> { w e. ( ClWWalks ` g ) | ( # ` w ) = n } )