Metamath Proof Explorer


Definition df-clwwlknon

Description: Define the set of all closed walks a graph g , anchored at a fixed vertex v (i.e., a walk starting and ending at the fixed vertex v , also called "a closed walk on vertex v ") and having a fixed length n as words over the set of vertices. Such a word corresponds to the sequence v=p(0) p(1) ... p(n-1) of the vertices in a closed walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n)=p(0)=v as defined in df-clwlks . The set ( ( v ( ClWWalksNOng ) n ) corresponds to the set of "walks from v to v of length n" in a statement of Huneke p. 2. (Contributed by AV, 24-Feb-2022)

Ref Expression
Assertion df-clwwlknon
|- ClWWalksNOn = ( g e. _V |-> ( v e. ( Vtx ` g ) , n e. NN0 |-> { w e. ( n ClWWalksN g ) | ( w ` 0 ) = v } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cclwwlknon
 |-  ClWWalksNOn
1 vg
 |-  g
2 cvv
 |-  _V
3 vv
 |-  v
4 cvtx
 |-  Vtx
5 1 cv
 |-  g
6 5 4 cfv
 |-  ( Vtx ` g )
7 vn
 |-  n
8 cn0
 |-  NN0
9 vw
 |-  w
10 7 cv
 |-  n
11 cclwwlkn
 |-  ClWWalksN
12 10 5 11 co
 |-  ( n ClWWalksN g )
13 9 cv
 |-  w
14 cc0
 |-  0
15 14 13 cfv
 |-  ( w ` 0 )
16 3 cv
 |-  v
17 15 16 wceq
 |-  ( w ` 0 ) = v
18 17 9 12 crab
 |-  { w e. ( n ClWWalksN g ) | ( w ` 0 ) = v }
19 3 7 6 8 18 cmpo
 |-  ( v e. ( Vtx ` g ) , n e. NN0 |-> { w e. ( n ClWWalksN g ) | ( w ` 0 ) = v } )
20 1 2 19 cmpt
 |-  ( g e. _V |-> ( v e. ( Vtx ` g ) , n e. NN0 |-> { w e. ( n ClWWalksN g ) | ( w ` 0 ) = v } ) )
21 0 20 wceq
 |-  ClWWalksNOn = ( g e. _V |-> ( v e. ( Vtx ` g ) , n e. NN0 |-> { w e. ( n ClWWalksN g ) | ( w ` 0 ) = v } ) )