| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							ccm | 
							 |-  C_H  | 
						
						
							| 1 | 
							
								
							 | 
							vx | 
							 |-  x  | 
						
						
							| 2 | 
							
								
							 | 
							vy | 
							 |-  y  | 
						
						
							| 3 | 
							
								1
							 | 
							cv | 
							 |-  x  | 
						
						
							| 4 | 
							
								
							 | 
							cch | 
							 |-  CH  | 
						
						
							| 5 | 
							
								3 4
							 | 
							wcel | 
							 |-  x e. CH  | 
						
						
							| 6 | 
							
								2
							 | 
							cv | 
							 |-  y  | 
						
						
							| 7 | 
							
								6 4
							 | 
							wcel | 
							 |-  y e. CH  | 
						
						
							| 8 | 
							
								5 7
							 | 
							wa | 
							 |-  ( x e. CH /\ y e. CH )  | 
						
						
							| 9 | 
							
								3 6
							 | 
							cin | 
							 |-  ( x i^i y )  | 
						
						
							| 10 | 
							
								
							 | 
							chj | 
							 |-  vH  | 
						
						
							| 11 | 
							
								
							 | 
							cort | 
							 |-  _|_  | 
						
						
							| 12 | 
							
								6 11
							 | 
							cfv | 
							 |-  ( _|_ ` y )  | 
						
						
							| 13 | 
							
								3 12
							 | 
							cin | 
							 |-  ( x i^i ( _|_ ` y ) )  | 
						
						
							| 14 | 
							
								9 13 10
							 | 
							co | 
							 |-  ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) )  | 
						
						
							| 15 | 
							
								3 14
							 | 
							wceq | 
							 |-  x = ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) )  | 
						
						
							| 16 | 
							
								8 15
							 | 
							wa | 
							 |-  ( ( x e. CH /\ y e. CH ) /\ x = ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) ) )  | 
						
						
							| 17 | 
							
								16 1 2
							 | 
							copab | 
							 |-  { <. x , y >. | ( ( x e. CH /\ y e. CH ) /\ x = ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) ) ) } | 
						
						
							| 18 | 
							
								0 17
							 | 
							wceq | 
							 |-  C_H = { <. x , y >. | ( ( x e. CH /\ y e. CH ) /\ x = ( ( x i^i y ) vH ( x i^i ( _|_ ` y ) ) ) ) } |