Step |
Hyp |
Ref |
Expression |
0 |
|
ccmet |
|- CMet |
1 |
|
vx |
|- x |
2 |
|
cvv |
|- _V |
3 |
|
vd |
|- d |
4 |
|
cmet |
|- Met |
5 |
1
|
cv |
|- x |
6 |
5 4
|
cfv |
|- ( Met ` x ) |
7 |
|
vf |
|- f |
8 |
|
ccfil |
|- CauFil |
9 |
3
|
cv |
|- d |
10 |
9 8
|
cfv |
|- ( CauFil ` d ) |
11 |
|
cmopn |
|- MetOpen |
12 |
9 11
|
cfv |
|- ( MetOpen ` d ) |
13 |
|
cflim |
|- fLim |
14 |
7
|
cv |
|- f |
15 |
12 14 13
|
co |
|- ( ( MetOpen ` d ) fLim f ) |
16 |
|
c0 |
|- (/) |
17 |
15 16
|
wne |
|- ( ( MetOpen ` d ) fLim f ) =/= (/) |
18 |
17 7 10
|
wral |
|- A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) |
19 |
18 3 6
|
crab |
|- { d e. ( Met ` x ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } |
20 |
1 2 19
|
cmpt |
|- ( x e. _V |-> { d e. ( Met ` x ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } ) |
21 |
0 20
|
wceq |
|- CMet = ( x e. _V |-> { d e. ( Met ` x ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } ) |