| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccmet |
|- CMet |
| 1 |
|
vx |
|- x |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vd |
|- d |
| 4 |
|
cmet |
|- Met |
| 5 |
1
|
cv |
|- x |
| 6 |
5 4
|
cfv |
|- ( Met ` x ) |
| 7 |
|
vf |
|- f |
| 8 |
|
ccfil |
|- CauFil |
| 9 |
3
|
cv |
|- d |
| 10 |
9 8
|
cfv |
|- ( CauFil ` d ) |
| 11 |
|
cmopn |
|- MetOpen |
| 12 |
9 11
|
cfv |
|- ( MetOpen ` d ) |
| 13 |
|
cflim |
|- fLim |
| 14 |
7
|
cv |
|- f |
| 15 |
12 14 13
|
co |
|- ( ( MetOpen ` d ) fLim f ) |
| 16 |
|
c0 |
|- (/) |
| 17 |
15 16
|
wne |
|- ( ( MetOpen ` d ) fLim f ) =/= (/) |
| 18 |
17 7 10
|
wral |
|- A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) |
| 19 |
18 3 6
|
crab |
|- { d e. ( Met ` x ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } |
| 20 |
1 2 19
|
cmpt |
|- ( x e. _V |-> { d e. ( Met ` x ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } ) |
| 21 |
0 20
|
wceq |
|- CMet = ( x e. _V |-> { d e. ( Met ` x ) | A. f e. ( CauFil ` d ) ( ( MetOpen ` d ) fLim f ) =/= (/) } ) |