| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccmn |  |-  CMnd | 
						
							| 1 |  | vg |  |-  g | 
						
							| 2 |  | cmnd |  |-  Mnd | 
						
							| 3 |  | va |  |-  a | 
						
							| 4 |  | cbs |  |-  Base | 
						
							| 5 | 1 | cv |  |-  g | 
						
							| 6 | 5 4 | cfv |  |-  ( Base ` g ) | 
						
							| 7 |  | vb |  |-  b | 
						
							| 8 | 3 | cv |  |-  a | 
						
							| 9 |  | cplusg |  |-  +g | 
						
							| 10 | 5 9 | cfv |  |-  ( +g ` g ) | 
						
							| 11 | 7 | cv |  |-  b | 
						
							| 12 | 8 11 10 | co |  |-  ( a ( +g ` g ) b ) | 
						
							| 13 | 11 8 10 | co |  |-  ( b ( +g ` g ) a ) | 
						
							| 14 | 12 13 | wceq |  |-  ( a ( +g ` g ) b ) = ( b ( +g ` g ) a ) | 
						
							| 15 | 14 7 6 | wral |  |-  A. b e. ( Base ` g ) ( a ( +g ` g ) b ) = ( b ( +g ` g ) a ) | 
						
							| 16 | 15 3 6 | wral |  |-  A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( a ( +g ` g ) b ) = ( b ( +g ` g ) a ) | 
						
							| 17 | 16 1 2 | crab |  |-  { g e. Mnd | A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( a ( +g ` g ) b ) = ( b ( +g ` g ) a ) } | 
						
							| 18 | 0 17 | wceq |  |-  CMnd = { g e. Mnd | A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( a ( +g ` g ) b ) = ( b ( +g ` g ) a ) } |