Metamath Proof Explorer


Definition df-cmn

Description: Define class of all commutative monoids. (Contributed by Mario Carneiro, 6-Jan-2015)

Ref Expression
Assertion df-cmn
|- CMnd = { g e. Mnd | A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( a ( +g ` g ) b ) = ( b ( +g ` g ) a ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccmn
 |-  CMnd
1 vg
 |-  g
2 cmnd
 |-  Mnd
3 va
 |-  a
4 cbs
 |-  Base
5 1 cv
 |-  g
6 5 4 cfv
 |-  ( Base ` g )
7 vb
 |-  b
8 3 cv
 |-  a
9 cplusg
 |-  +g
10 5 9 cfv
 |-  ( +g ` g )
11 7 cv
 |-  b
12 8 11 10 co
 |-  ( a ( +g ` g ) b )
13 11 8 10 co
 |-  ( b ( +g ` g ) a )
14 12 13 wceq
 |-  ( a ( +g ` g ) b ) = ( b ( +g ` g ) a )
15 14 7 6 wral
 |-  A. b e. ( Base ` g ) ( a ( +g ` g ) b ) = ( b ( +g ` g ) a )
16 15 3 6 wral
 |-  A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( a ( +g ` g ) b ) = ( b ( +g ` g ) a )
17 16 1 2 crab
 |-  { g e. Mnd | A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( a ( +g ` g ) b ) = ( b ( +g ` g ) a ) }
18 0 17 wceq
 |-  CMnd = { g e. Mnd | A. a e. ( Base ` g ) A. b e. ( Base ` g ) ( a ( +g ` g ) b ) = ( b ( +g ` g ) a ) }