Description: Define the class of complete metric spaces. (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-cms | |- CMetSp = { w e. MetSp | [. ( Base ` w ) / b ]. ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ccms | |- CMetSp |
|
1 | vw | |- w |
|
2 | cms | |- MetSp |
|
3 | cbs | |- Base |
|
4 | 1 | cv | |- w |
5 | 4 3 | cfv | |- ( Base ` w ) |
6 | vb | |- b |
|
7 | cds | |- dist |
|
8 | 4 7 | cfv | |- ( dist ` w ) |
9 | 6 | cv | |- b |
10 | 9 9 | cxp | |- ( b X. b ) |
11 | 8 10 | cres | |- ( ( dist ` w ) |` ( b X. b ) ) |
12 | ccmet | |- CMet |
|
13 | 9 12 | cfv | |- ( CMet ` b ) |
14 | 11 13 | wcel | |- ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) |
15 | 14 6 5 | wsbc | |- [. ( Base ` w ) / b ]. ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) |
16 | 15 1 2 | crab | |- { w e. MetSp | [. ( Base ` w ) / b ]. ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) } |
17 | 0 16 | wceq | |- CMetSp = { w e. MetSp | [. ( Base ` w ) / b ]. ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) } |