Metamath Proof Explorer


Definition df-cms

Description: Define the class of complete metric spaces. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion df-cms
|- CMetSp = { w e. MetSp | [. ( Base ` w ) / b ]. ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccms
 |-  CMetSp
1 vw
 |-  w
2 cms
 |-  MetSp
3 cbs
 |-  Base
4 1 cv
 |-  w
5 4 3 cfv
 |-  ( Base ` w )
6 vb
 |-  b
7 cds
 |-  dist
8 4 7 cfv
 |-  ( dist ` w )
9 6 cv
 |-  b
10 9 9 cxp
 |-  ( b X. b )
11 8 10 cres
 |-  ( ( dist ` w ) |` ( b X. b ) )
12 ccmet
 |-  CMet
13 9 12 cfv
 |-  ( CMet ` b )
14 11 13 wcel
 |-  ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b )
15 14 6 5 wsbc
 |-  [. ( Base ` w ) / b ]. ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b )
16 15 1 2 crab
 |-  { w e. MetSp | [. ( Base ` w ) / b ]. ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) }
17 0 16 wceq
 |-  CMetSp = { w e. MetSp | [. ( Base ` w ) / b ]. ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) }