Description: Define the class of complete metric spaces. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cms | |- CMetSp = { w e. MetSp | [. ( Base ` w ) / b ]. ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccms | |- CMetSp |
|
| 1 | vw | |- w |
|
| 2 | cms | |- MetSp |
|
| 3 | cbs | |- Base |
|
| 4 | 1 | cv | |- w |
| 5 | 4 3 | cfv | |- ( Base ` w ) |
| 6 | vb | |- b |
|
| 7 | cds | |- dist |
|
| 8 | 4 7 | cfv | |- ( dist ` w ) |
| 9 | 6 | cv | |- b |
| 10 | 9 9 | cxp | |- ( b X. b ) |
| 11 | 8 10 | cres | |- ( ( dist ` w ) |` ( b X. b ) ) |
| 12 | ccmet | |- CMet |
|
| 13 | 9 12 | cfv | |- ( CMet ` b ) |
| 14 | 11 13 | wcel | |- ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) |
| 15 | 14 6 5 | wsbc | |- [. ( Base ` w ) / b ]. ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) |
| 16 | 15 1 2 | crab | |- { w e. MetSp | [. ( Base ` w ) / b ]. ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) } |
| 17 | 0 16 | wceq | |- CMetSp = { w e. MetSp | [. ( Base ` w ) / b ]. ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) } |