Metamath Proof Explorer


Definition df-cmtN

Description: Define the commutes relation for orthoposets. Definition of commutes in Kalmbach p. 20. (Contributed by NM, 6-Nov-2011)

Ref Expression
Assertion df-cmtN
|- cm = ( p e. _V |-> { <. x , y >. | ( x e. ( Base ` p ) /\ y e. ( Base ` p ) /\ x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccmtN
 |-  cm
1 vp
 |-  p
2 cvv
 |-  _V
3 vx
 |-  x
4 vy
 |-  y
5 3 cv
 |-  x
6 cbs
 |-  Base
7 1 cv
 |-  p
8 7 6 cfv
 |-  ( Base ` p )
9 5 8 wcel
 |-  x e. ( Base ` p )
10 4 cv
 |-  y
11 10 8 wcel
 |-  y e. ( Base ` p )
12 cmee
 |-  meet
13 7 12 cfv
 |-  ( meet ` p )
14 5 10 13 co
 |-  ( x ( meet ` p ) y )
15 cjn
 |-  join
16 7 15 cfv
 |-  ( join ` p )
17 coc
 |-  oc
18 7 17 cfv
 |-  ( oc ` p )
19 10 18 cfv
 |-  ( ( oc ` p ) ` y )
20 5 19 13 co
 |-  ( x ( meet ` p ) ( ( oc ` p ) ` y ) )
21 14 20 16 co
 |-  ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) )
22 5 21 wceq
 |-  x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) )
23 9 11 22 w3a
 |-  ( x e. ( Base ` p ) /\ y e. ( Base ` p ) /\ x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) )
24 23 3 4 copab
 |-  { <. x , y >. | ( x e. ( Base ` p ) /\ y e. ( Base ` p ) /\ x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) ) }
25 1 2 24 cmpt
 |-  ( p e. _V |-> { <. x , y >. | ( x e. ( Base ` p ) /\ y e. ( Base ` p ) /\ x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) ) } )
26 0 25 wceq
 |-  cm = ( p e. _V |-> { <. x , y >. | ( x e. ( Base ` p ) /\ y e. ( Base ` p ) /\ x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) ) } )