Step |
Hyp |
Ref |
Expression |
0 |
|
ccmtN |
|- cm |
1 |
|
vp |
|- p |
2 |
|
cvv |
|- _V |
3 |
|
vx |
|- x |
4 |
|
vy |
|- y |
5 |
3
|
cv |
|- x |
6 |
|
cbs |
|- Base |
7 |
1
|
cv |
|- p |
8 |
7 6
|
cfv |
|- ( Base ` p ) |
9 |
5 8
|
wcel |
|- x e. ( Base ` p ) |
10 |
4
|
cv |
|- y |
11 |
10 8
|
wcel |
|- y e. ( Base ` p ) |
12 |
|
cmee |
|- meet |
13 |
7 12
|
cfv |
|- ( meet ` p ) |
14 |
5 10 13
|
co |
|- ( x ( meet ` p ) y ) |
15 |
|
cjn |
|- join |
16 |
7 15
|
cfv |
|- ( join ` p ) |
17 |
|
coc |
|- oc |
18 |
7 17
|
cfv |
|- ( oc ` p ) |
19 |
10 18
|
cfv |
|- ( ( oc ` p ) ` y ) |
20 |
5 19 13
|
co |
|- ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) |
21 |
14 20 16
|
co |
|- ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) |
22 |
5 21
|
wceq |
|- x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) |
23 |
9 11 22
|
w3a |
|- ( x e. ( Base ` p ) /\ y e. ( Base ` p ) /\ x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) ) |
24 |
23 3 4
|
copab |
|- { <. x , y >. | ( x e. ( Base ` p ) /\ y e. ( Base ` p ) /\ x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) ) } |
25 |
1 2 24
|
cmpt |
|- ( p e. _V |-> { <. x , y >. | ( x e. ( Base ` p ) /\ y e. ( Base ` p ) /\ x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) ) } ) |
26 |
0 25
|
wceq |
|- cm = ( p e. _V |-> { <. x , y >. | ( x e. ( Base ` p ) /\ y e. ( Base ` p ) /\ x = ( ( x ( meet ` p ) y ) ( join ` p ) ( x ( meet ` p ) ( ( oc ` p ) ` y ) ) ) ) } ) |