| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccnf |  |-  CNF | 
						
							| 1 |  | vx |  |-  x | 
						
							| 2 |  | con0 |  |-  On | 
						
							| 3 |  | vy |  |-  y | 
						
							| 4 |  | vf |  |-  f | 
						
							| 5 |  | vg |  |-  g | 
						
							| 6 | 1 | cv |  |-  x | 
						
							| 7 |  | cmap |  |-  ^m | 
						
							| 8 | 3 | cv |  |-  y | 
						
							| 9 | 6 8 7 | co |  |-  ( x ^m y ) | 
						
							| 10 | 5 | cv |  |-  g | 
						
							| 11 |  | cfsupp |  |-  finSupp | 
						
							| 12 |  | c0 |  |-  (/) | 
						
							| 13 | 10 12 11 | wbr |  |-  g finSupp (/) | 
						
							| 14 | 13 5 9 | crab |  |-  { g e. ( x ^m y ) | g finSupp (/) } | 
						
							| 15 |  | cep |  |-  _E | 
						
							| 16 | 4 | cv |  |-  f | 
						
							| 17 |  | csupp |  |-  supp | 
						
							| 18 | 16 12 17 | co |  |-  ( f supp (/) ) | 
						
							| 19 | 18 15 | coi |  |-  OrdIso ( _E , ( f supp (/) ) ) | 
						
							| 20 |  | vh |  |-  h | 
						
							| 21 |  | vk |  |-  k | 
						
							| 22 |  | cvv |  |-  _V | 
						
							| 23 |  | vz |  |-  z | 
						
							| 24 |  | coe |  |-  ^o | 
						
							| 25 | 20 | cv |  |-  h | 
						
							| 26 | 21 | cv |  |-  k | 
						
							| 27 | 26 25 | cfv |  |-  ( h ` k ) | 
						
							| 28 | 6 27 24 | co |  |-  ( x ^o ( h ` k ) ) | 
						
							| 29 |  | comu |  |-  .o | 
						
							| 30 | 27 16 | cfv |  |-  ( f ` ( h ` k ) ) | 
						
							| 31 | 28 30 29 | co |  |-  ( ( x ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) | 
						
							| 32 |  | coa |  |-  +o | 
						
							| 33 | 23 | cv |  |-  z | 
						
							| 34 | 31 33 32 | co |  |-  ( ( ( x ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) | 
						
							| 35 | 21 23 22 22 34 | cmpo |  |-  ( k e. _V , z e. _V |-> ( ( ( x ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) | 
						
							| 36 | 35 12 | cseqom |  |-  seqom ( ( k e. _V , z e. _V |-> ( ( ( x ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) | 
						
							| 37 | 25 | cdm |  |-  dom h | 
						
							| 38 | 37 36 | cfv |  |-  ( seqom ( ( k e. _V , z e. _V |-> ( ( ( x ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) | 
						
							| 39 | 20 19 38 | csb |  |-  [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( x ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) | 
						
							| 40 | 4 14 39 | cmpt |  |-  ( f e. { g e. ( x ^m y ) | g finSupp (/) } |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( x ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) | 
						
							| 41 | 1 3 2 2 40 | cmpo |  |-  ( x e. On , y e. On |-> ( f e. { g e. ( x ^m y ) | g finSupp (/) } |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( x ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) ) | 
						
							| 42 | 0 41 | wceq |  |-  CNF = ( x e. On , y e. On |-> ( f e. { g e. ( x ^m y ) | g finSupp (/) } |-> [_ OrdIso ( _E , ( f supp (/) ) ) / h ]_ ( seqom ( ( k e. _V , z e. _V |-> ( ( ( x ^o ( h ` k ) ) .o ( f ` ( h ` k ) ) ) +o z ) ) , (/) ) ` dom h ) ) ) |