Metamath Proof Explorer


Definition df-cnfld

Description: The field of complex numbers. Other number fields and rings can be constructed by applying the ` |``s restriction operator, for instance ( CCfld |`AA ) is the field of algebraic numbers.

The contract of this set is defined entirely by cnfldex , cnfldadd , cnfldmul , cnfldcj , cnfldtset , cnfldle , cnfldds , and cnfldbas . We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Thierry Arnoux, 15-Dec-2017) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025) (New usage is discouraged.)

Ref Expression
Assertion df-cnfld
|- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccnfld
 |-  CCfld
1 cbs
 |-  Base
2 cnx
 |-  ndx
3 2 1 cfv
 |-  ( Base ` ndx )
4 cc
 |-  CC
5 3 4 cop
 |-  <. ( Base ` ndx ) , CC >.
6 cplusg
 |-  +g
7 2 6 cfv
 |-  ( +g ` ndx )
8 vx
 |-  x
9 vy
 |-  y
10 8 cv
 |-  x
11 caddc
 |-  +
12 9 cv
 |-  y
13 10 12 11 co
 |-  ( x + y )
14 8 9 4 4 13 cmpo
 |-  ( x e. CC , y e. CC |-> ( x + y ) )
15 7 14 cop
 |-  <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >.
16 cmulr
 |-  .r
17 2 16 cfv
 |-  ( .r ` ndx )
18 cmul
 |-  x.
19 10 12 18 co
 |-  ( x x. y )
20 8 9 4 4 19 cmpo
 |-  ( x e. CC , y e. CC |-> ( x x. y ) )
21 17 20 cop
 |-  <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >.
22 5 15 21 ctp
 |-  { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. }
23 cstv
 |-  *r
24 2 23 cfv
 |-  ( *r ` ndx )
25 ccj
 |-  *
26 24 25 cop
 |-  <. ( *r ` ndx ) , * >.
27 26 csn
 |-  { <. ( *r ` ndx ) , * >. }
28 22 27 cun
 |-  ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } )
29 cts
 |-  TopSet
30 2 29 cfv
 |-  ( TopSet ` ndx )
31 cmopn
 |-  MetOpen
32 cabs
 |-  abs
33 cmin
 |-  -
34 32 33 ccom
 |-  ( abs o. - )
35 34 31 cfv
 |-  ( MetOpen ` ( abs o. - ) )
36 30 35 cop
 |-  <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >.
37 cple
 |-  le
38 2 37 cfv
 |-  ( le ` ndx )
39 cle
 |-  <_
40 38 39 cop
 |-  <. ( le ` ndx ) , <_ >.
41 cds
 |-  dist
42 2 41 cfv
 |-  ( dist ` ndx )
43 42 34 cop
 |-  <. ( dist ` ndx ) , ( abs o. - ) >.
44 36 40 43 ctp
 |-  { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. }
45 cunif
 |-  UnifSet
46 2 45 cfv
 |-  ( UnifSet ` ndx )
47 cmetu
 |-  metUnif
48 34 47 cfv
 |-  ( metUnif ` ( abs o. - ) )
49 46 48 cop
 |-  <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >.
50 49 csn
 |-  { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. }
51 44 50 cun
 |-  ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } )
52 28 51 cun
 |-  ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) )
53 0 52 wceq
 |-  CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) )