Description: The field of complex numbers. Other number fields and rings can be constructed by applying the ` |``s restriction operator, for instance ( CCfld |`AA ) is the field of algebraic numbers.
The contract of this set is defined entirely by cnfldex , cnfldadd , cnfldmul , cnfldcj , cnfldtset , cnfldle , cnfldds , and cnfldbas . We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Thierry Arnoux, 15-Dec-2017) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cnfld | |- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccnfld | |- CCfld |
|
| 1 | cbs | |- Base |
|
| 2 | cnx | |- ndx |
|
| 3 | 2 1 | cfv | |- ( Base ` ndx ) |
| 4 | cc | |- CC |
|
| 5 | 3 4 | cop | |- <. ( Base ` ndx ) , CC >. |
| 6 | cplusg | |- +g |
|
| 7 | 2 6 | cfv | |- ( +g ` ndx ) |
| 8 | vx | |- x |
|
| 9 | vy | |- y |
|
| 10 | 8 | cv | |- x |
| 11 | caddc | |- + |
|
| 12 | 9 | cv | |- y |
| 13 | 10 12 11 | co | |- ( x + y ) |
| 14 | 8 9 4 4 13 | cmpo | |- ( x e. CC , y e. CC |-> ( x + y ) ) |
| 15 | 7 14 | cop | |- <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. |
| 16 | cmulr | |- .r |
|
| 17 | 2 16 | cfv | |- ( .r ` ndx ) |
| 18 | cmul | |- x. |
|
| 19 | 10 12 18 | co | |- ( x x. y ) |
| 20 | 8 9 4 4 19 | cmpo | |- ( x e. CC , y e. CC |-> ( x x. y ) ) |
| 21 | 17 20 | cop | |- <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. |
| 22 | 5 15 21 | ctp | |- { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } |
| 23 | cstv | |- *r |
|
| 24 | 2 23 | cfv | |- ( *r ` ndx ) |
| 25 | ccj | |- * |
|
| 26 | 24 25 | cop | |- <. ( *r ` ndx ) , * >. |
| 27 | 26 | csn | |- { <. ( *r ` ndx ) , * >. } |
| 28 | 22 27 | cun | |- ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) |
| 29 | cts | |- TopSet |
|
| 30 | 2 29 | cfv | |- ( TopSet ` ndx ) |
| 31 | cmopn | |- MetOpen |
|
| 32 | cabs | |- abs |
|
| 33 | cmin | |- - |
|
| 34 | 32 33 | ccom | |- ( abs o. - ) |
| 35 | 34 31 | cfv | |- ( MetOpen ` ( abs o. - ) ) |
| 36 | 30 35 | cop | |- <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. |
| 37 | cple | |- le |
|
| 38 | 2 37 | cfv | |- ( le ` ndx ) |
| 39 | cle | |- <_ |
|
| 40 | 38 39 | cop | |- <. ( le ` ndx ) , <_ >. |
| 41 | cds | |- dist |
|
| 42 | 2 41 | cfv | |- ( dist ` ndx ) |
| 43 | 42 34 | cop | |- <. ( dist ` ndx ) , ( abs o. - ) >. |
| 44 | 36 40 43 | ctp | |- { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } |
| 45 | cunif | |- UnifSet |
|
| 46 | 2 45 | cfv | |- ( UnifSet ` ndx ) |
| 47 | cmetu | |- metUnif |
|
| 48 | 34 47 | cfv | |- ( metUnif ` ( abs o. - ) ) |
| 49 | 46 48 | cop | |- <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. |
| 50 | 49 | csn | |- { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } |
| 51 | 44 50 | cun | |- ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) |
| 52 | 28 51 | cun | |- ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
| 53 | 0 52 | wceq | |- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |