Description: The field of complex numbers. Other number fields and rings can be constructed by applying the ` |``s restriction operator, for instance ( CCfld |`AA ) is the field of algebraic numbers.
The contract of this set is defined entirely by cnfldex , cnfldadd , cnfldmul , cnfldcj , cnfldtset , cnfldle , cnfldds , and cnfldbas . We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Thierry Arnoux, 15-Dec-2017) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-cnfld | |- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ccnfld | |- CCfld |
|
1 | cbs | |- Base |
|
2 | cnx | |- ndx |
|
3 | 2 1 | cfv | |- ( Base ` ndx ) |
4 | cc | |- CC |
|
5 | 3 4 | cop | |- <. ( Base ` ndx ) , CC >. |
6 | cplusg | |- +g |
|
7 | 2 6 | cfv | |- ( +g ` ndx ) |
8 | caddc | |- + |
|
9 | 7 8 | cop | |- <. ( +g ` ndx ) , + >. |
10 | cmulr | |- .r |
|
11 | 2 10 | cfv | |- ( .r ` ndx ) |
12 | cmul | |- x. |
|
13 | 11 12 | cop | |- <. ( .r ` ndx ) , x. >. |
14 | 5 9 13 | ctp | |- { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } |
15 | cstv | |- *r |
|
16 | 2 15 | cfv | |- ( *r ` ndx ) |
17 | ccj | |- * |
|
18 | 16 17 | cop | |- <. ( *r ` ndx ) , * >. |
19 | 18 | csn | |- { <. ( *r ` ndx ) , * >. } |
20 | 14 19 | cun | |- ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) |
21 | cts | |- TopSet |
|
22 | 2 21 | cfv | |- ( TopSet ` ndx ) |
23 | cmopn | |- MetOpen |
|
24 | cabs | |- abs |
|
25 | cmin | |- - |
|
26 | 24 25 | ccom | |- ( abs o. - ) |
27 | 26 23 | cfv | |- ( MetOpen ` ( abs o. - ) ) |
28 | 22 27 | cop | |- <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. |
29 | cple | |- le |
|
30 | 2 29 | cfv | |- ( le ` ndx ) |
31 | cle | |- <_ |
|
32 | 30 31 | cop | |- <. ( le ` ndx ) , <_ >. |
33 | cds | |- dist |
|
34 | 2 33 | cfv | |- ( dist ` ndx ) |
35 | 34 26 | cop | |- <. ( dist ` ndx ) , ( abs o. - ) >. |
36 | 28 32 35 | ctp | |- { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } |
37 | cunif | |- UnifSet |
|
38 | 2 37 | cfv | |- ( UnifSet ` ndx ) |
39 | cmetu | |- metUnif |
|
40 | 26 39 | cfv | |- ( metUnif ` ( abs o. - ) ) |
41 | 38 40 | cop | |- <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. |
42 | 41 | csn | |- { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } |
43 | 36 42 | cun | |- ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) |
44 | 20 43 | cun | |- ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
45 | 0 44 | wceq | |- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , + >. , <. ( .r ` ndx ) , x. >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |