Description: The field of complex numbers. Other number fields and rings can be constructed by applying the ` |``s restriction operator, for instance ( CCfld |`AA ) is the field of algebraic numbers.
The contract of this set is defined entirely by cnfldex , cnfldadd , cnfldmul , cnfldcj , cnfldtset , cnfldle , cnfldds , and cnfldbas . We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Thierry Arnoux, 15-Dec-2017) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-cnfld | |- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ccnfld | |- CCfld |
|
1 | cbs | |- Base |
|
2 | cnx | |- ndx |
|
3 | 2 1 | cfv | |- ( Base ` ndx ) |
4 | cc | |- CC |
|
5 | 3 4 | cop | |- <. ( Base ` ndx ) , CC >. |
6 | cplusg | |- +g |
|
7 | 2 6 | cfv | |- ( +g ` ndx ) |
8 | vx | |- x |
|
9 | vy | |- y |
|
10 | 8 | cv | |- x |
11 | caddc | |- + |
|
12 | 9 | cv | |- y |
13 | 10 12 11 | co | |- ( x + y ) |
14 | 8 9 4 4 13 | cmpo | |- ( x e. CC , y e. CC |-> ( x + y ) ) |
15 | 7 14 | cop | |- <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. |
16 | cmulr | |- .r |
|
17 | 2 16 | cfv | |- ( .r ` ndx ) |
18 | cmul | |- x. |
|
19 | 10 12 18 | co | |- ( x x. y ) |
20 | 8 9 4 4 19 | cmpo | |- ( x e. CC , y e. CC |-> ( x x. y ) ) |
21 | 17 20 | cop | |- <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. |
22 | 5 15 21 | ctp | |- { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } |
23 | cstv | |- *r |
|
24 | 2 23 | cfv | |- ( *r ` ndx ) |
25 | ccj | |- * |
|
26 | 24 25 | cop | |- <. ( *r ` ndx ) , * >. |
27 | 26 | csn | |- { <. ( *r ` ndx ) , * >. } |
28 | 22 27 | cun | |- ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) |
29 | cts | |- TopSet |
|
30 | 2 29 | cfv | |- ( TopSet ` ndx ) |
31 | cmopn | |- MetOpen |
|
32 | cabs | |- abs |
|
33 | cmin | |- - |
|
34 | 32 33 | ccom | |- ( abs o. - ) |
35 | 34 31 | cfv | |- ( MetOpen ` ( abs o. - ) ) |
36 | 30 35 | cop | |- <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. |
37 | cple | |- le |
|
38 | 2 37 | cfv | |- ( le ` ndx ) |
39 | cle | |- <_ |
|
40 | 38 39 | cop | |- <. ( le ` ndx ) , <_ >. |
41 | cds | |- dist |
|
42 | 2 41 | cfv | |- ( dist ` ndx ) |
43 | 42 34 | cop | |- <. ( dist ` ndx ) , ( abs o. - ) >. |
44 | 36 40 43 | ctp | |- { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } |
45 | cunif | |- UnifSet |
|
46 | 2 45 | cfv | |- ( UnifSet ` ndx ) |
47 | cmetu | |- metUnif |
|
48 | 34 47 | cfv | |- ( metUnif ` ( abs o. - ) ) |
49 | 46 48 | cop | |- <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. |
50 | 49 | csn | |- { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } |
51 | 44 50 | cun | |- ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) |
52 | 28 51 | cun | |- ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |
53 | 0 52 | wceq | |- CCfld = ( ( { <. ( Base ` ndx ) , CC >. , <. ( +g ` ndx ) , ( x e. CC , y e. CC |-> ( x + y ) ) >. , <. ( .r ` ndx ) , ( x e. CC , y e. CC |-> ( x x. y ) ) >. } u. { <. ( *r ` ndx ) , * >. } ) u. ( { <. ( TopSet ` ndx ) , ( MetOpen ` ( abs o. - ) ) >. , <. ( le ` ndx ) , <_ >. , <. ( dist ` ndx ) , ( abs o. - ) >. } u. { <. ( UnifSet ` ndx ) , ( metUnif ` ( abs o. - ) ) >. } ) ) |