| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccnfn |  |-  ContFn | 
						
							| 1 |  | vt |  |-  t | 
						
							| 2 |  | cc |  |-  CC | 
						
							| 3 |  | cmap |  |-  ^m | 
						
							| 4 |  | chba |  |-  ~H | 
						
							| 5 | 2 4 3 | co |  |-  ( CC ^m ~H ) | 
						
							| 6 |  | vx |  |-  x | 
						
							| 7 |  | vy |  |-  y | 
						
							| 8 |  | crp |  |-  RR+ | 
						
							| 9 |  | vz |  |-  z | 
						
							| 10 |  | vw |  |-  w | 
						
							| 11 |  | cno |  |-  normh | 
						
							| 12 | 10 | cv |  |-  w | 
						
							| 13 |  | cmv |  |-  -h | 
						
							| 14 | 6 | cv |  |-  x | 
						
							| 15 | 12 14 13 | co |  |-  ( w -h x ) | 
						
							| 16 | 15 11 | cfv |  |-  ( normh ` ( w -h x ) ) | 
						
							| 17 |  | clt |  |-  < | 
						
							| 18 | 9 | cv |  |-  z | 
						
							| 19 | 16 18 17 | wbr |  |-  ( normh ` ( w -h x ) ) < z | 
						
							| 20 |  | cabs |  |-  abs | 
						
							| 21 | 1 | cv |  |-  t | 
						
							| 22 | 12 21 | cfv |  |-  ( t ` w ) | 
						
							| 23 |  | cmin |  |-  - | 
						
							| 24 | 14 21 | cfv |  |-  ( t ` x ) | 
						
							| 25 | 22 24 23 | co |  |-  ( ( t ` w ) - ( t ` x ) ) | 
						
							| 26 | 25 20 | cfv |  |-  ( abs ` ( ( t ` w ) - ( t ` x ) ) ) | 
						
							| 27 | 7 | cv |  |-  y | 
						
							| 28 | 26 27 17 | wbr |  |-  ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y | 
						
							| 29 | 19 28 | wi |  |-  ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) | 
						
							| 30 | 29 10 4 | wral |  |-  A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) | 
						
							| 31 | 30 9 8 | wrex |  |-  E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) | 
						
							| 32 | 31 7 8 | wral |  |-  A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) | 
						
							| 33 | 32 6 4 | wral |  |-  A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) | 
						
							| 34 | 33 1 5 | crab |  |-  { t e. ( CC ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) } | 
						
							| 35 | 0 34 | wceq |  |-  ContFn = { t e. ( CC ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) } |