Step |
Hyp |
Ref |
Expression |
0 |
|
ccnfn |
|- ContFn |
1 |
|
vt |
|- t |
2 |
|
cc |
|- CC |
3 |
|
cmap |
|- ^m |
4 |
|
chba |
|- ~H |
5 |
2 4 3
|
co |
|- ( CC ^m ~H ) |
6 |
|
vx |
|- x |
7 |
|
vy |
|- y |
8 |
|
crp |
|- RR+ |
9 |
|
vz |
|- z |
10 |
|
vw |
|- w |
11 |
|
cno |
|- normh |
12 |
10
|
cv |
|- w |
13 |
|
cmv |
|- -h |
14 |
6
|
cv |
|- x |
15 |
12 14 13
|
co |
|- ( w -h x ) |
16 |
15 11
|
cfv |
|- ( normh ` ( w -h x ) ) |
17 |
|
clt |
|- < |
18 |
9
|
cv |
|- z |
19 |
16 18 17
|
wbr |
|- ( normh ` ( w -h x ) ) < z |
20 |
|
cabs |
|- abs |
21 |
1
|
cv |
|- t |
22 |
12 21
|
cfv |
|- ( t ` w ) |
23 |
|
cmin |
|- - |
24 |
14 21
|
cfv |
|- ( t ` x ) |
25 |
22 24 23
|
co |
|- ( ( t ` w ) - ( t ` x ) ) |
26 |
25 20
|
cfv |
|- ( abs ` ( ( t ` w ) - ( t ` x ) ) ) |
27 |
7
|
cv |
|- y |
28 |
26 27 17
|
wbr |
|- ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y |
29 |
19 28
|
wi |
|- ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) |
30 |
29 10 4
|
wral |
|- A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) |
31 |
30 9 8
|
wrex |
|- E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) |
32 |
31 7 8
|
wral |
|- A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) |
33 |
32 6 4
|
wral |
|- A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) |
34 |
33 1 5
|
crab |
|- { t e. ( CC ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) } |
35 |
0 34
|
wceq |
|- ContFn = { t e. ( CC ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( abs ` ( ( t ` w ) - ( t ` x ) ) ) < y ) } |